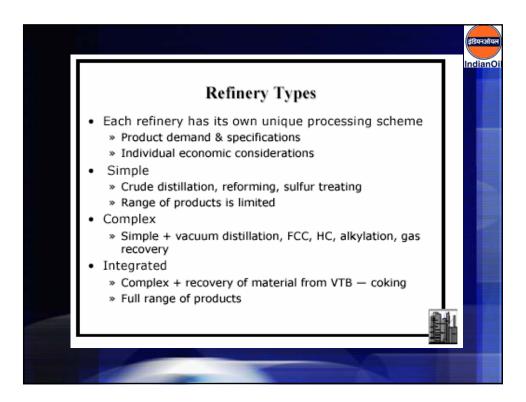
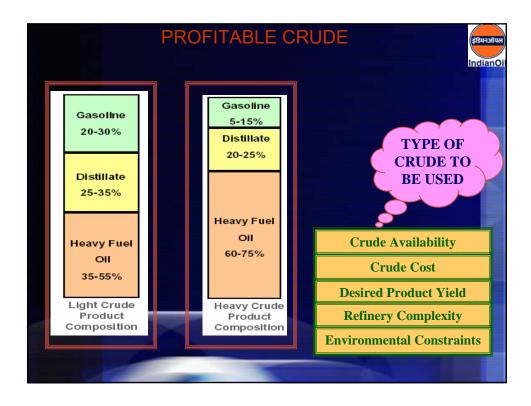
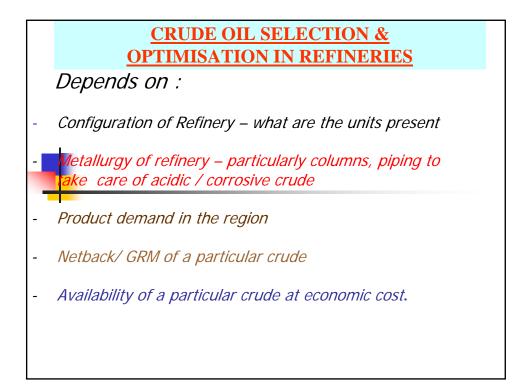
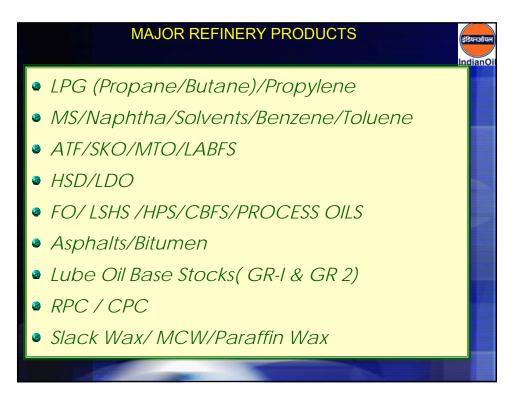

ESSENTIALS OF REFINERY PROCESSES

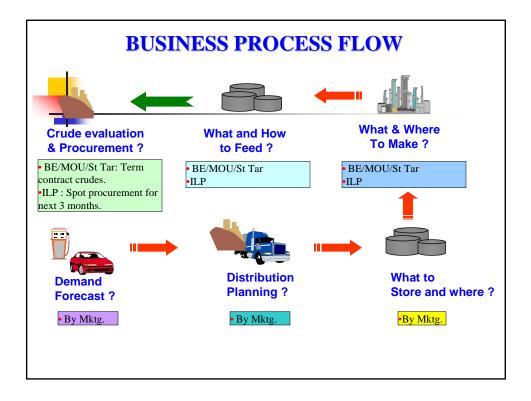

S K KALRA INDIAN OIL CORPORATION LTD PANIPAT REFINERY

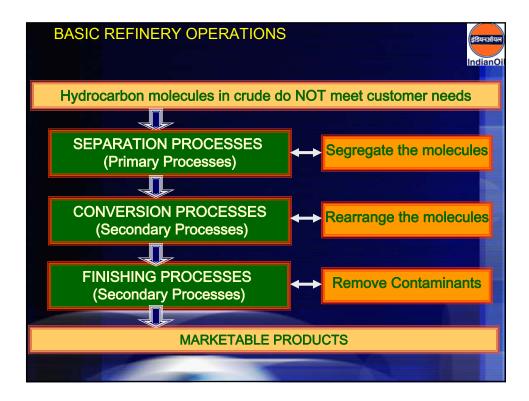


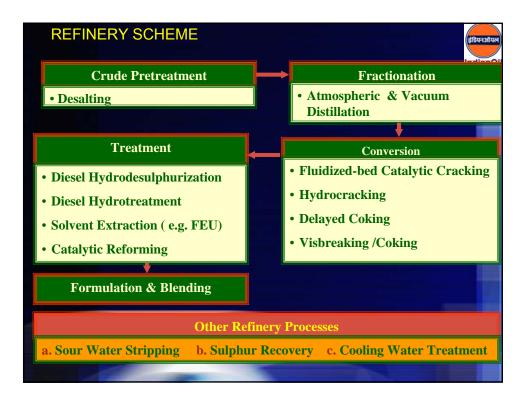


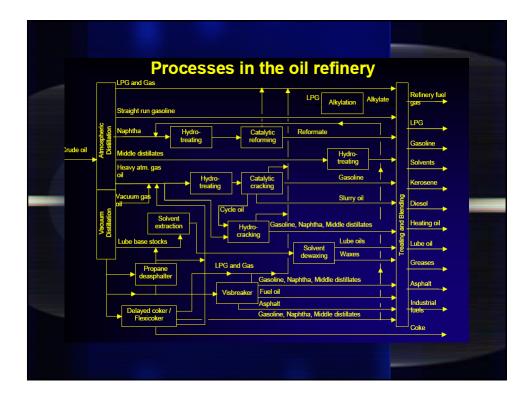
	°API	SG
Light	>35	<0.85
Medium	26-35	0.85-0.8984
Heavy	10-26	0.8984-1.00
Extra Heavy	<10	>1.00
📽 By Sulphur (%	<i>śwt.):</i>	
Sweet		<0.5
Medium sour		0.5-1.0
Sour		>1.0


4 types of cru around the wo		le to refiners
	°API	Sulphur (% wt.)
Light Sweet	30-40	<0.5
Light Sour	30-40	0.5-1.5
Heavy Sour	15-30	1.5-3
Extra Heavy	<15	>3

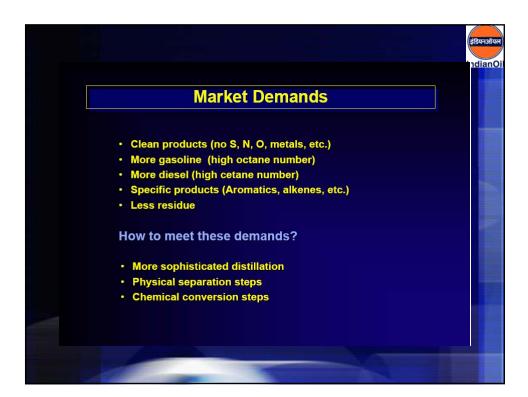


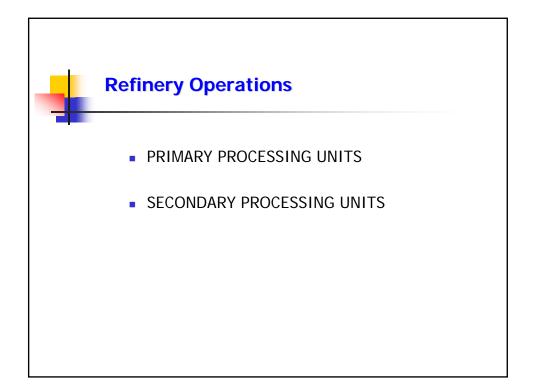


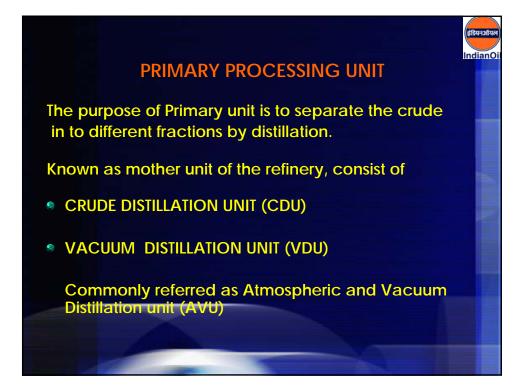


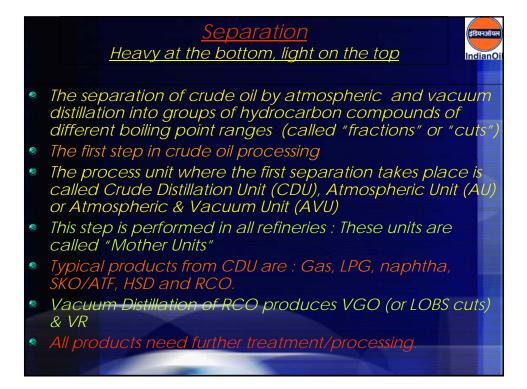

Sl.no	Product	Key Quality parameters
1.	LPG	Evaporation Temperature at 95 % Volume =2 deg C, Max Cu Corrosion =not worse than No.1 RVP =1050 KPa, Max
2.	Motor Spirit	Density=720-775 Kg/M3RON=91 MinSulphur=150 ppm, MaxBenzene=1 Vol. %, Max
3.	ATF	Density =775-840 Kg/M3 Flash Point = 38 deg c, Min Sulphur =0.25 wt %,Max Smoke Point =20 mm, Min
4.	SKO	Density =790-820 Kg/M3 Flash Point =35 deg c, Min Sulphur = 0.25 wt %, Max Smoke point = 18 mm, Min

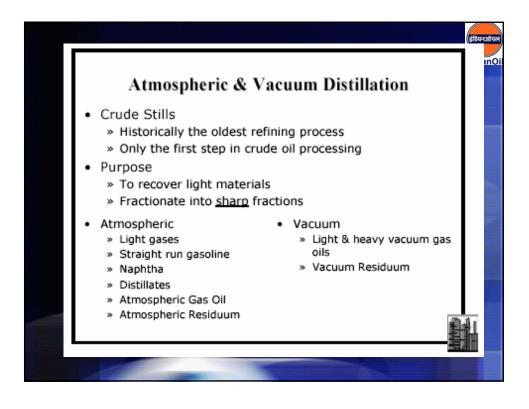
Ino Product Key Quality parameters Diesel Density =820-845 Kg/M3 Sulphur = 350 ppm Cetane Number = 51 Min Recovery at 360 deg C =95 Min	=820-845 Kg/M3 = 350 ppm = 51 Min =95 Min
Sulphur = 350 ppm Cetane Number = 51 Min Recovery at 360 deg C =95 Min	= 350 ppm = 51 Min =95 Min
Cetane Number= 51 MinRecovery at 360 deg C=95 Min	= 51 Min =95 Min
Recovery at 360 deg C =95 Min	=95 Min
. Fuel Oil Kinematic Viscosity@ 50 deg c =125 , Max (Winter)	
=180 , Max (Summer)	=180 , Max (Summer)
Sulphur = 4 wt %, Max	
Ash = 0.1 wt %, Max	= 0.1 wt %, Max
. Bitumen Penetration at 25 deg c =60 (1/10mm) , Min	
	=60 (1/10mm) , Min
Flash Point =175 deg C,Min	=60 (1/10mm) , Min =175 deg C,Min

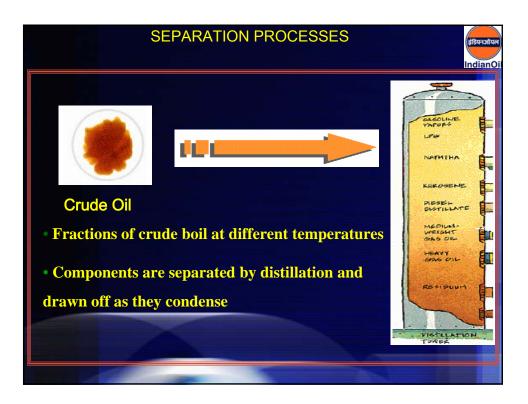


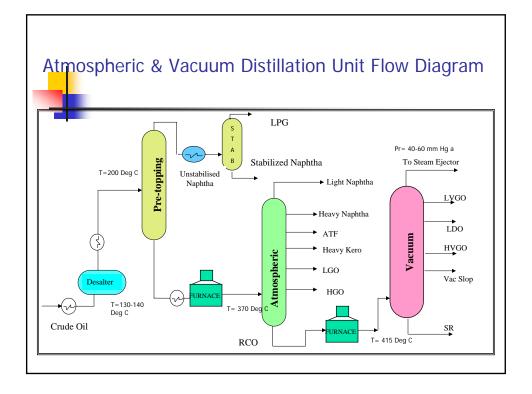


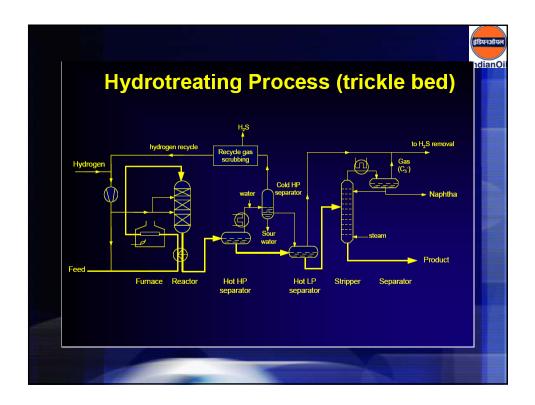


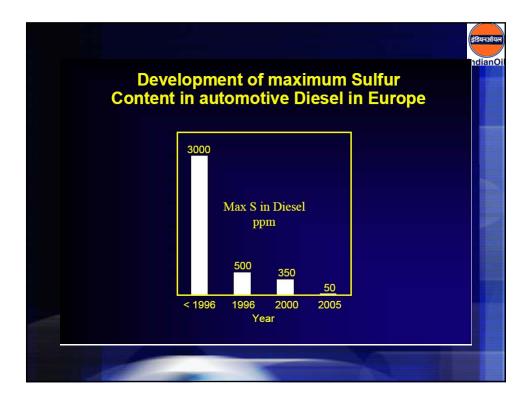

	Observices	
Physical processes	Chemical p Thermal	Catalytic
Distillation Solvent extraction Propane deasphalting Solvent dewaxing Blending	Visbreaking Delayed coking Flexicoking	Hydrotreating Catalytic reforming Catalytic cracking Hydrocracking Catalytic dewaxing Alkylation Polymerization Isomerization



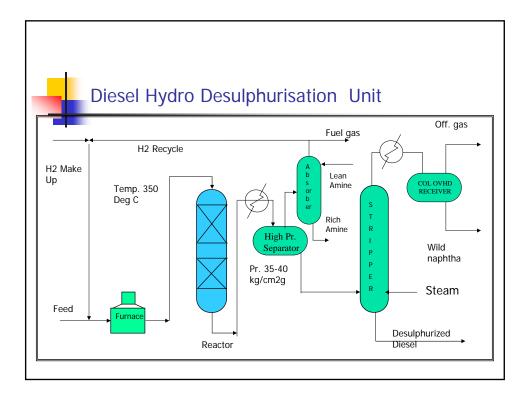

<u>REFI</u>	<u>CONFIGURATION OF</u> <u>NERIES / REFINING PROCESSES</u>
PRIMARY UNITS	CRUDE DISTILLATION UNIT (CDU)/ VACUUM DISTILLATION UNIT(VDU)
SECONDARY UNITS	FLUID CATALYTIC CRACKING UNIT (FCCU), HYDRO-CRACKING UNIT (HCU), DELAYED COKER UNIT (DCU), VISBREAKER UNIT (VBU)
LUBE/WAX PRODUCING UNITS	FURFURAL EXTRACTION UNIT (FEU) / NMP EXTRACTION UNIT, SOLVENT DEWAXING UNIT (SDU), CATALYTIC ISO-DEWAXING UNIT (CIDW), WAX HYDROTREATING UNIT (WHU), HYDRO-FINISHING UNIT (HFU)
TREATING UNITS	CATALYTIC REFORMING UNIT (CRU) DIESEL HYRDO-TREATING UNIT (DHDT), DIESEL HYDRO-DESULFURISATION UNIT (DHDS), MEROX UNIT, ETC

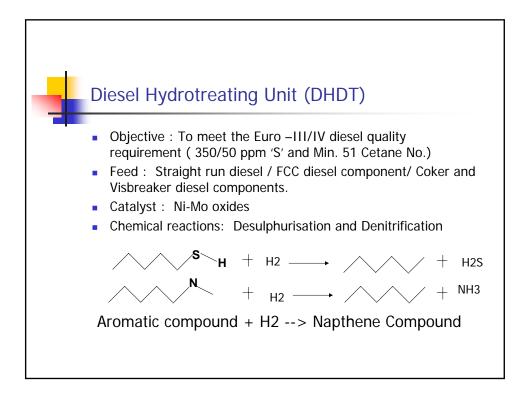


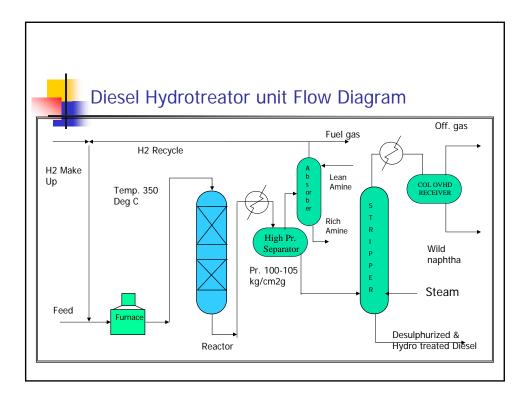


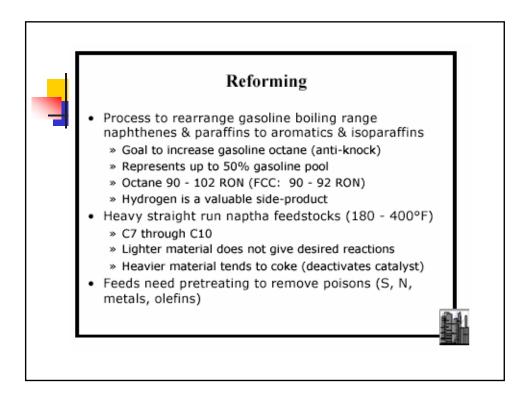


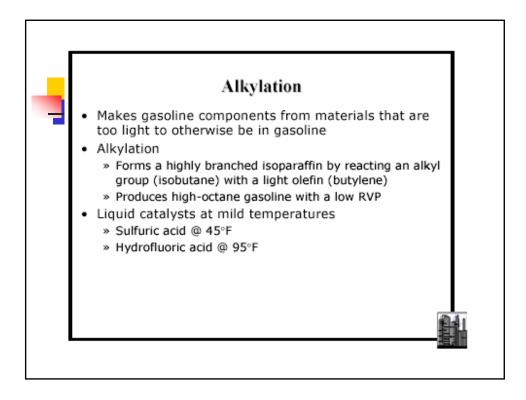
Cr	ude Oil Refinii	ng	
Distillate frac	ction Boiling point (°C)	nt C-atoms/ molecule	
Gases	<30	1-4	
Gasoline	30-210	5-12	
Naphtha	100-200	8-12	
Kerosine (jet	fuel) 150-250	11-13 Middle	
Diesel, Fuel	oil 160-400	13-17 Distillate	5
Atmospheric Gasoil	220-345		
Heavy Fuel C	Dil 315-540	20-45	
Atmospheric Residue	>540	>30	
Vacuum Res	idue >615	>60	

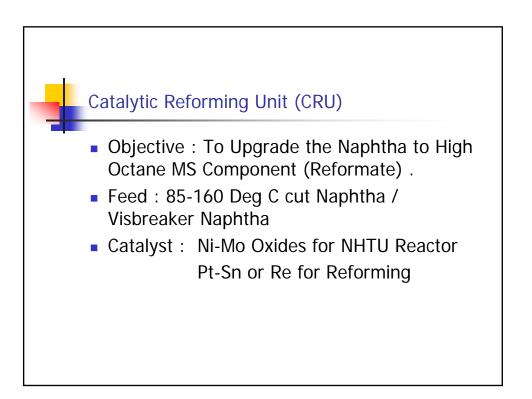


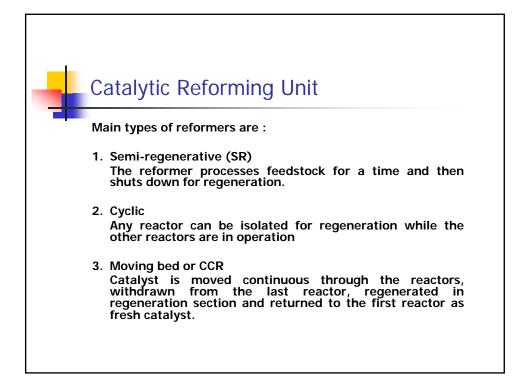


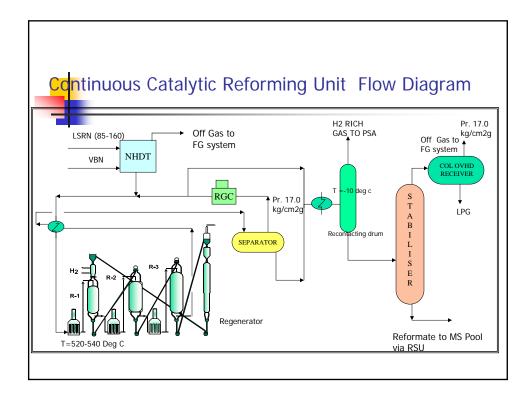


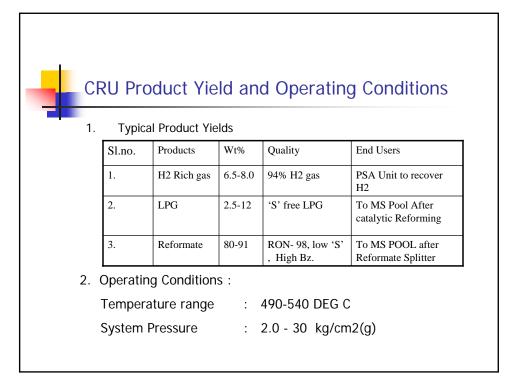

DHDS Proo	duct Yiel	ds and Operatir	ng Conditio	ns India
	1. Typ	ical Product Yiel Products	ds Wt%	End Users
	1.	Off Gas	1.36	Refinery Fuel gas system after Amine Work
	2.	Wild Naphtha	1.04	To Naphtha Pool after stabilisation
	3.	Diesel	97.1	To Euro II Diesel Pool
		ating Conditions		
	Temp	perature range	: 320-3	880 DEG C
	Syste	em Pressure	: 30-40) kg/cm2(g)
	4			

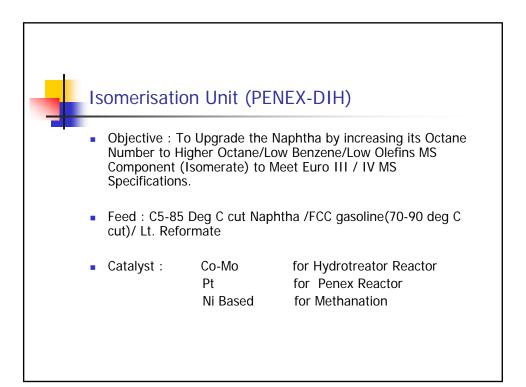


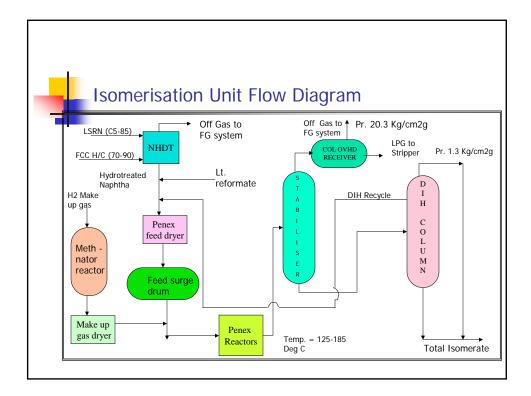


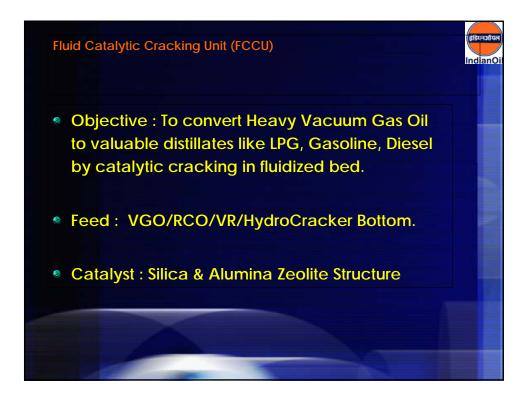

DH		Oduct Yields		erating Conditio	ons
	Sl.no.	Products	Wt%	End Users	
	1.	Off Gas	2.65	Refinery Fuel gas system after Amine Wash	
	2.	Wild Naphtha	2.8	To Naphtha Pool after stabilisation	
	3.	Diesel	96.1	To Diesel Pool	
	Ter	erating Conditions nperature range tem Pressure	: 320	-380 DEG C -105 kg/cm2(g)	

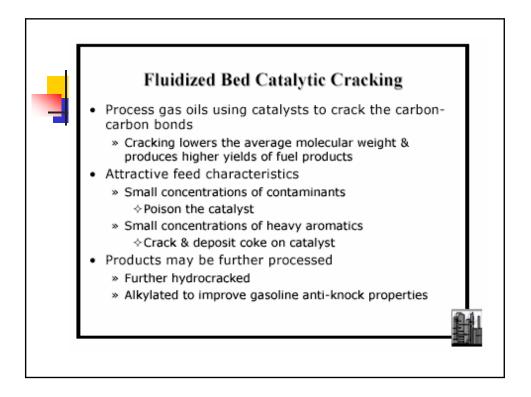

Up	Upgrading Gasoline Blend Stocks			
	Reforming	Isomerization	Alkylation	
Purpose	Create high	octane gasoline b	lend stock	
Feedstock	Heavy Naphtha	Light Naphtha	C4s (Butylene & Isobutane)	
Reactions	Dehydrogenation of Cycloparaffins	Isomerization of Straight Chain Paraffins	Combination of Smaller Molecules	
Side Benefits	Make hydrogen for use elsewhere in the refinery		Use light olefins made in FCCU	



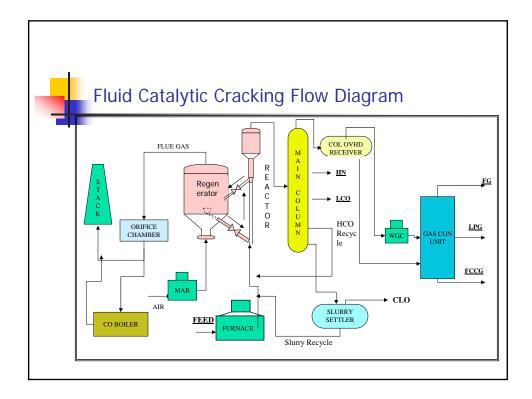








ISO	M Pro	duct Yield	and Ope	erating Condition
1.		Product Yields		5
	Sl.no.	Products	Wt%	End Users
	1.	Off gas	1.4	Refinery fuel gas System
	2.	LPG	11.3	To LPG POOL
	3.	Isomerate	87.3	To MS POOL
•	U U	Conditions :	126 145	
Ter	nperatu	re range :	120- 145	DEG C
Sys	stem Pre	essure :	33.5 kg/c	:m2(g)

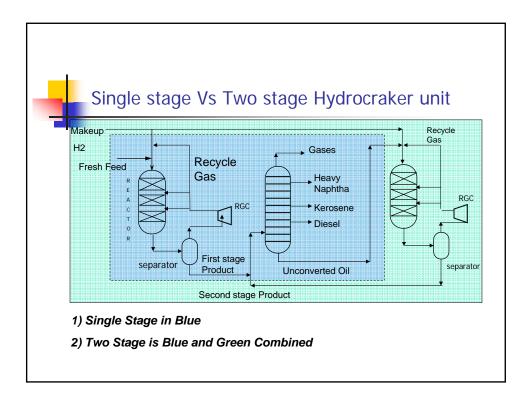


	TECHNOLOGICAL ASPECTS
FCCU / RFCCU	Heavier Hydro-Carbon molecules are cracked under severe operating conditions of Temp. (500 – 510 °C) and pressure (1.4 - 2.2 kg/cm2) to get Lighter Hydro-Carbons like LPG, MS & HSD components. Strict operating conditions are maintained to get on-specs. products.
HCU / OHCU	Heavier Hydro-Carbon molecules are mixed with Hydrogen and the mixture is subjected to severe operating conditions of Temp. (380 - 400 °C) and pressure (165 – 185 kg/cm2) to get Lighter Hydro-Carbons like LPG, MS & HSD components. Strict operating conditions are maintained to get on-specs. products. All products are of Superior quality w.r.t. Sulfur content.

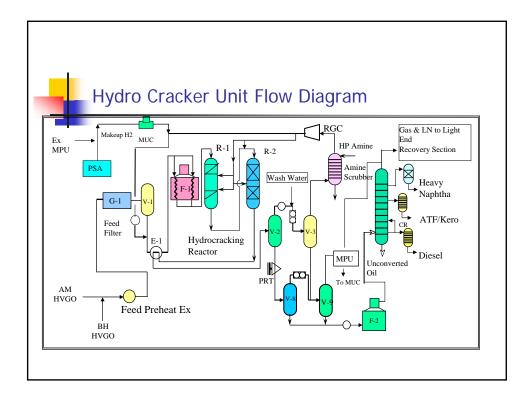


YIELD	PATTER	<u>N OF VAI</u>	RIOUS FCC UN	Starssing NTTS IndianOil
	VGO FCC	<u>RFCC</u>	INDMAX	PETROFCC
FEED	VGO	VGO+VR	VGO+VR+EXTRACT	VGO
FEED QUALITY				
CCR, WT% S", WT%	0.74 3.4	4.06 3.59	<10	0.74 3.4
VR CONTENT, WT%	NIL	20 MAX	<44	NIL
<u>PRODUCT, WT %</u>				
GAS	1.47	3.00	10.44	8.80
LPG	8.68	8.79	16.80	21.00
PROPYLENE	3.04	3.71	11.20	22.00
GASOLINE	20.06	18.60	28.00	28.00
DIESEL (TCO)	52.64	46.45	10.10	9.50
FO	7.98	10.82	8.60	5.00
COKE	5.00	7.43	13.80	5.50
PRODUCT KEY PROPER	<u>RTIES</u>			
GASOLINE : RON	89	92.9	96	95
DIESEL CETANE IND <mark>EX</mark>	30.9	29.6	18	30

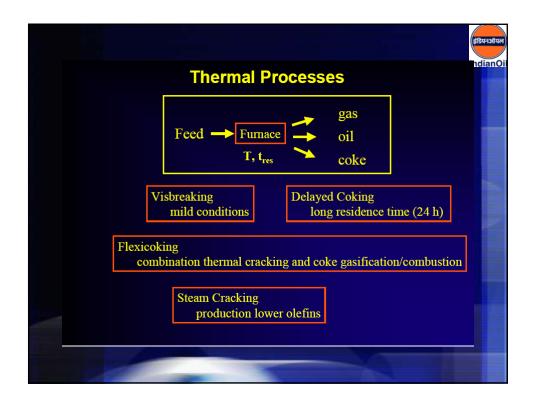
FCCU P	roduct Qualities	& End Users	(distructure Indiano
Sl.No	Product	Qualities	End Users
1.	Gas	H2S rich Off. Gas	Refinery Fuel gas System after Amine Wash
2.	LPG	H2S, Mercaptons, olefins like Propylene/Butylene	To LPG Pool/ Petrochemical feedstock
3.	Gasoline	High Octane No. and high Olefin contents	MS Pool
4.	Hy.Naphtha + LCO	Low Cetane no. High 'S' , Unsaturates	Diesel Pool After Hydrotreatment
5.	CLO	High Aromatics, Good Cutter Stock	Fuel Oil

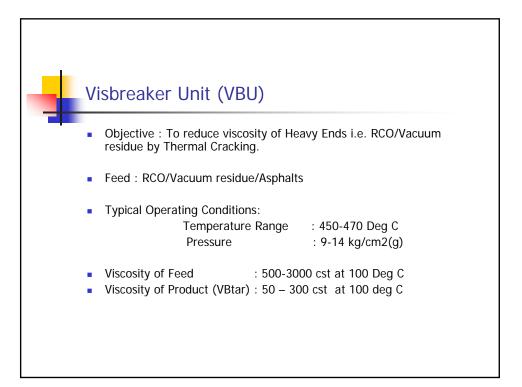


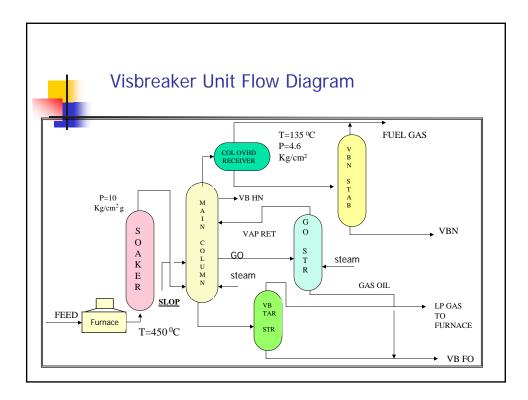
	Hydrocracking Process Indianoi
۲	Feedstock : VGO
9	Products & Yields:Gas2.5%LPG2.5%Naphtha8%SKO/ATF25%HSD22%Unconverted40%
	Good process for increasing distillates and producing finished products. Existing at Gujarat, Mathura, and Panipat
	refineries.


	<u>HCU</u>	<u>OHCU</u>	इंडियनऑयल IndianOil
FEED	VGO	VGO	
FEED QUALITY CCR, WT% MAX S, WT%, MAX N, PPM, MAX Ni+V, PPM, MAX SODIUM, PPM	1 2.8 800 1.25 1	1 2.8 800 1.25 1	
PRODUCTS, WT % GAS LPG NAPHTHA KEROSENE DIESEL BOTTOM	2.52 4.57 11.33 39.58 41.81 0.00	3.27 1.95 9.13 12.00 50.65 25.00	

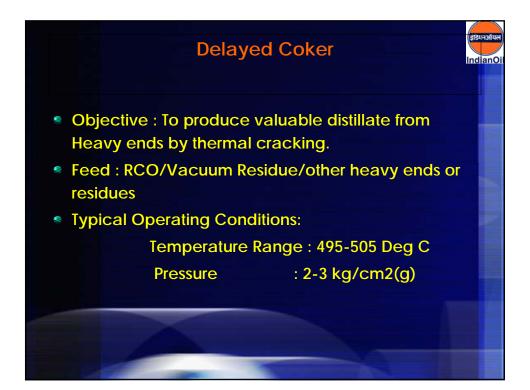
	<u>HCU</u>	<u>OHCU</u>	इंडियनऑयल IndianOil
PRODUCT KEY PROPERTIES			
NAPHTHA:			
RON	72	72	
S', PPM, MAX	10	10	
KEROSENE :			
SMOKE POINT, MM	22-23	22-23	
FREEZINFG POINT, ^o C	< 60	< 60	
DIESEL :			
CETANE INDEX	62	56	
S', PPM	< 10	< 10	
POUT POINT, ^o C	- 12	- 12	
	State of the local division of the local div		



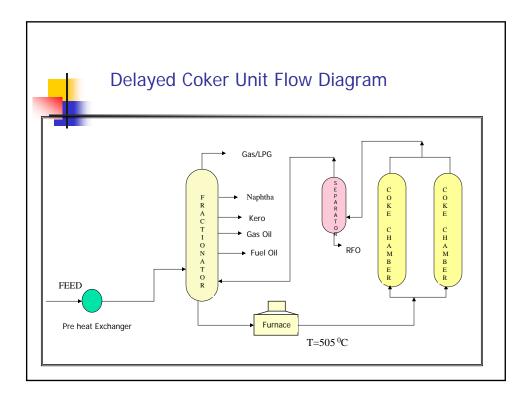


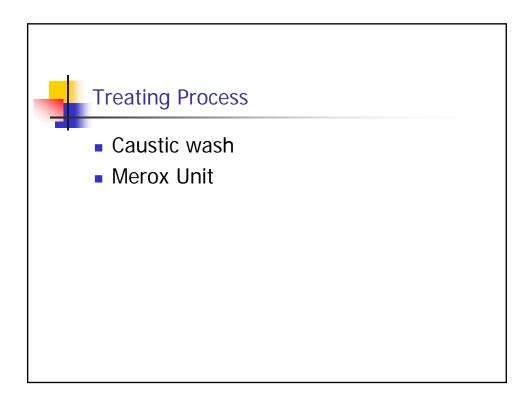

HCU Produ	ct Yield	ds and Opera	ting Conditions		इंडियनऑयल IndianOil
1	. Туј	oical Product \	/ields		
	Sl.no.	Products	Wt%		
	1.	Off. Gas	2-4		
	2.	LPG	1.5-3		
	3.	Naphtha	6.5-10		
	4.	ATF/Kero	27-40		
	5.	Diesel	29-40		
	6.	Hydrocraker	5-35		
2	Oper	Bottom ating Conditio	ns ·		
		perature rang	e : 370-420		
	Syst	em Pressure	: 160-170	kg/cm2(g)	

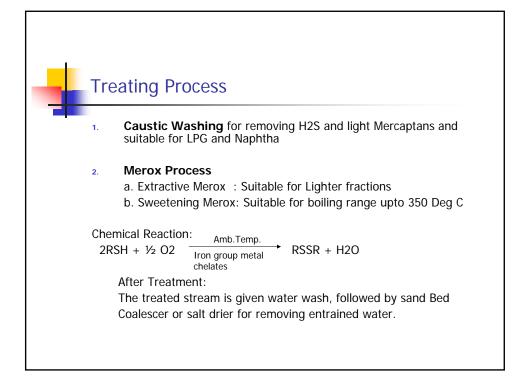
HCU Proc	duct Qualities 8	a End Users	(Starsiter IndianO
Sl.No	Product	Qualities	End Users
1.	Gas	H2S rich Off. Gas	Refinery Fuel gas System after Amine Wash
2.	LPG	H2S Contents	To LPG Pool after caustic wash
3.	Naphtha	low Octane No. and low 'S' contents	To Gasoline Pool / Hydrogen unit Feed
4.	ATF / Kero	Low 'S' and Low Aromatics	To ATF/ kero. Pool
5.	Diesel	Low 'S' and High Cetane	EURO – III Diesel
6.	Unconverted Oil	Low 'S', High Saturates	FCCU FEED

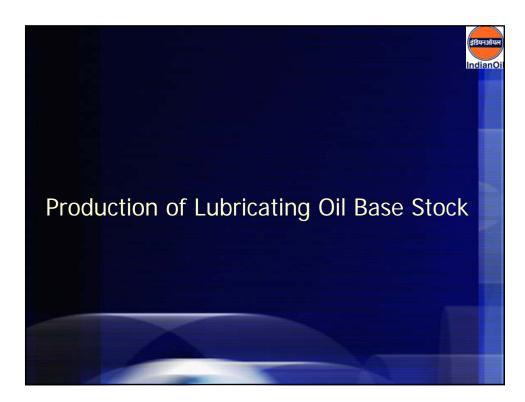


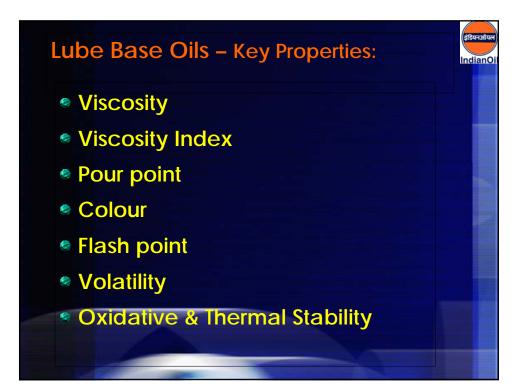


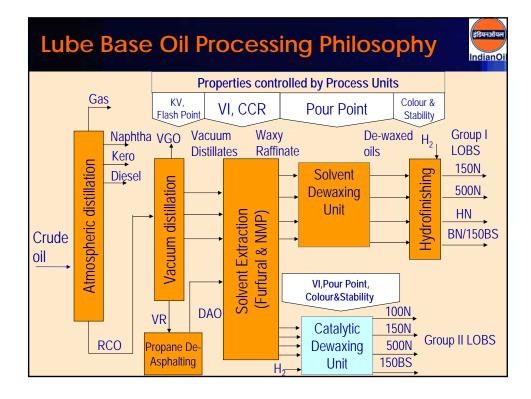


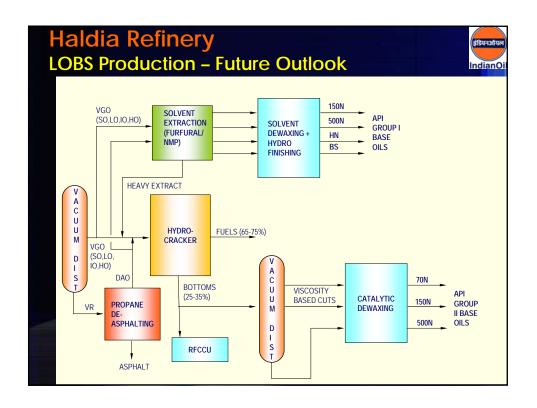

VBU Product Yield/Qualities & End Users					
Sl.No	Product	Yield	Qualities	End Users	
1.	Gas	1.82	H2S rich Off. Gas	Refinery Fuel gas System after Amine Wash	
2.	VB Naphtha	3.12	H2S, Mercaptons, high olefins	To FCCU or CRU	
3.	VB Gas Oil	13.9	Low Cetane no, Highly unsaturated	To DHDS or Fuel Oil	
4.	VB Tar	81.16	Lower Viscosity than feed	Fuel Oil	

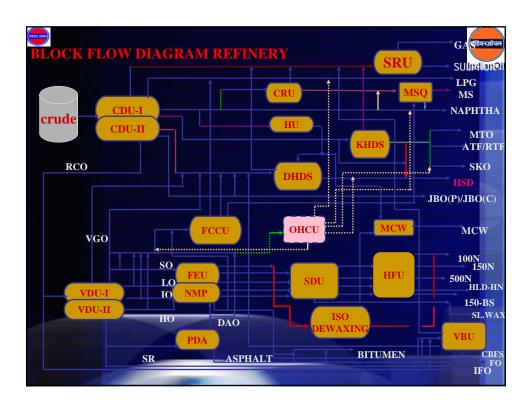


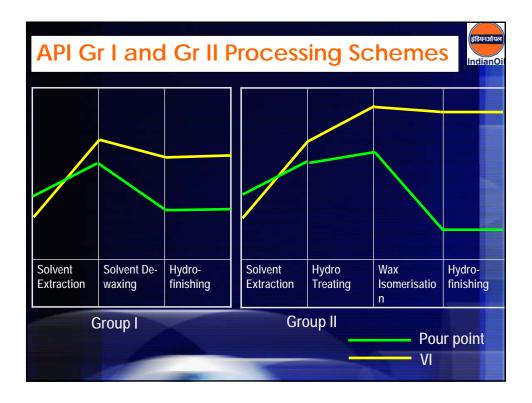


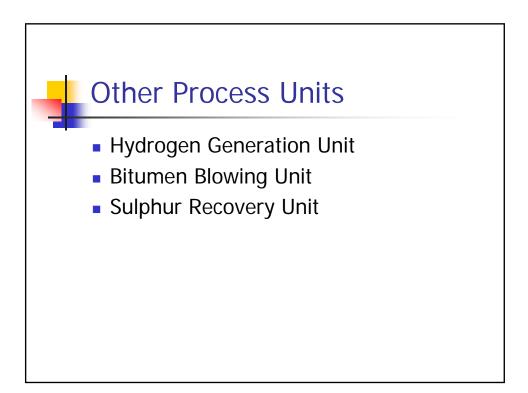

Delayed Coker Product Yield/Qualities & End Users						
Sl.No	Product	Qualities	End Users			
1.	Gas	H2S rich Off. Gas	Refinery FG after Amine Wash			
2.	LPG	Mercaptons, unsaturates	To LPG after Merox /Caustic wash			
3.	Naphtha	Low Octane, High Olefins	To FCC or CRU			
4.	Kerosene	High unsatuartes	To DHDT Feed			
5.	Gas Oil	Low Cetane No. and high unsaturates	To DHDT & HCU feed			
6.	Fuel Oil	Good cutter stock	Fuel Oil			
7.	Coke	Low ash, High Sulphur	Gasification/Electrode Preparation/ cement ind.			

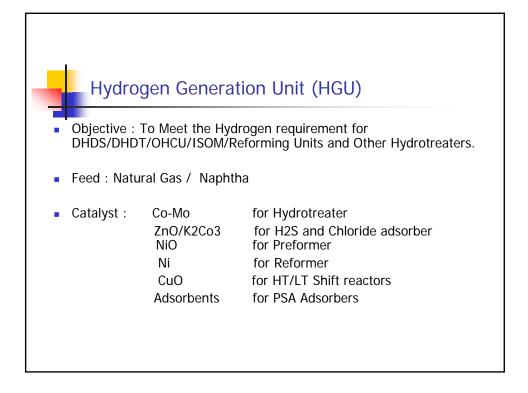


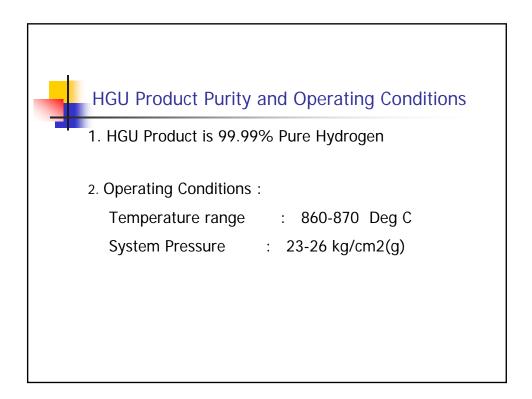


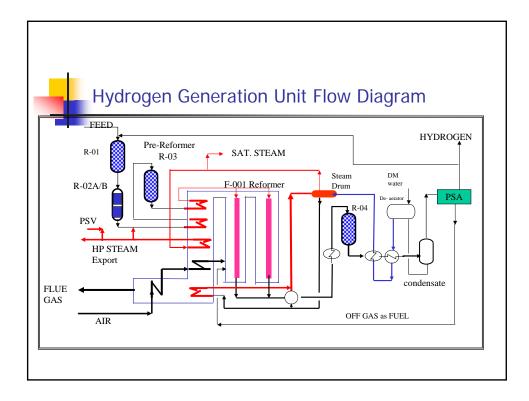


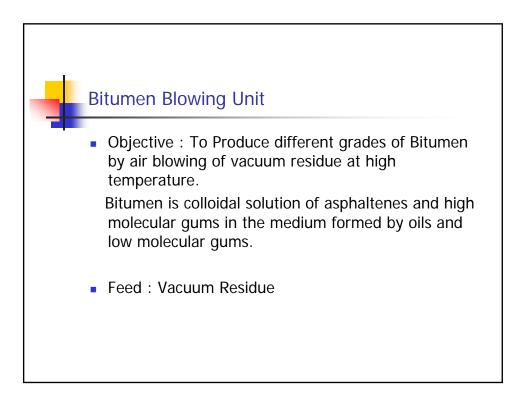


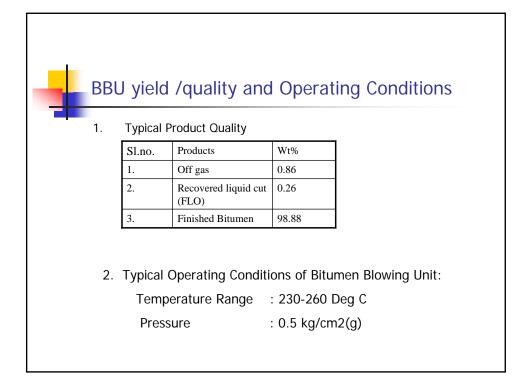

API Base Oil Characterization Groups						
	Viscosity Index	Saturates % wt	Sulphur %wt			
GROUP I	80-120	<90	>0.03			
GROUP II	80-120	>90	<0.03	2		
GROUP III	>120	>90	<0.03			
GROUP IV	Poly Alpha Olefins(Synthetic Oils)					
GROUP V	All other base oils					

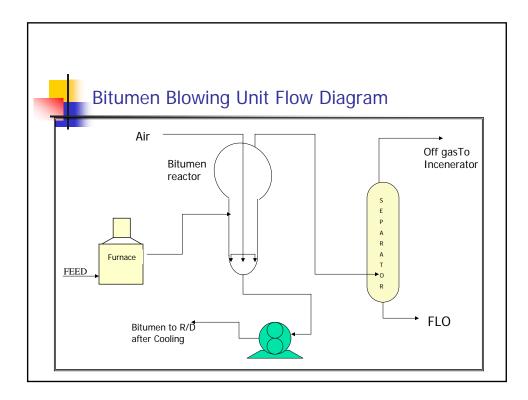


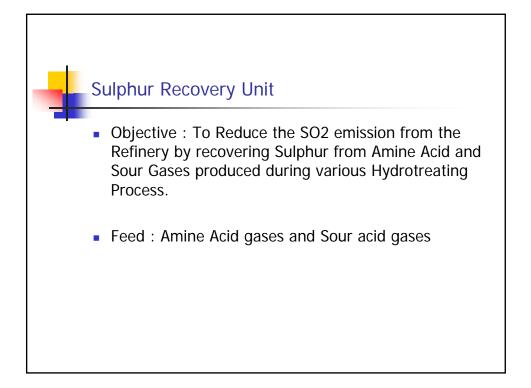


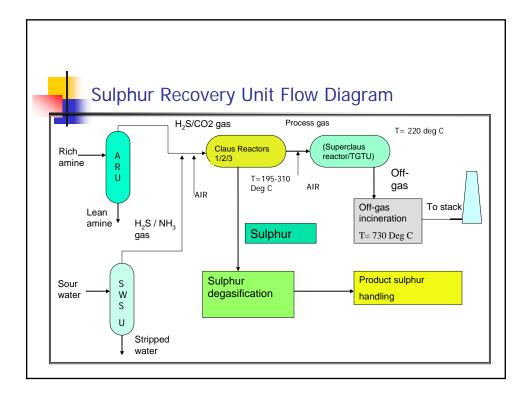


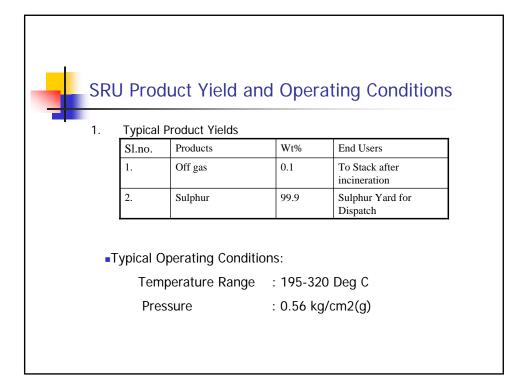


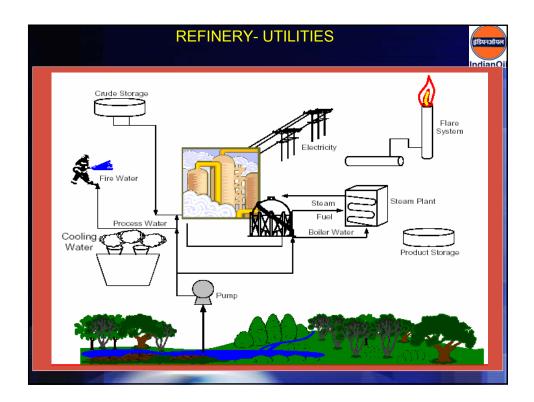


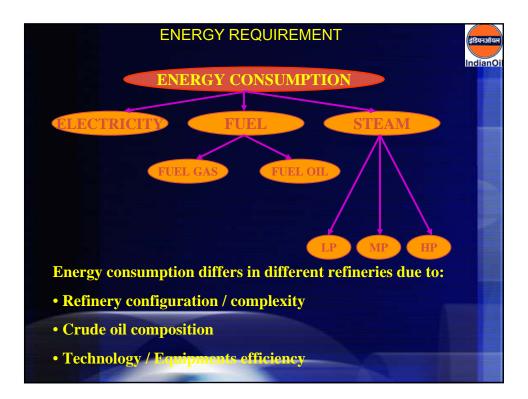


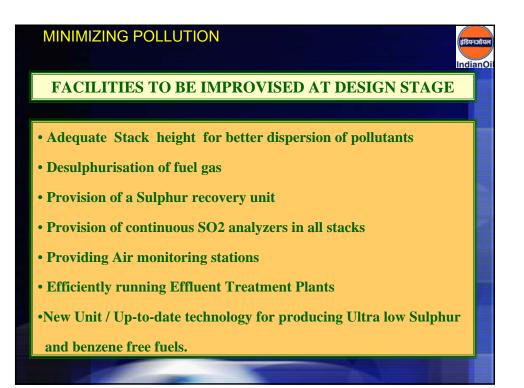


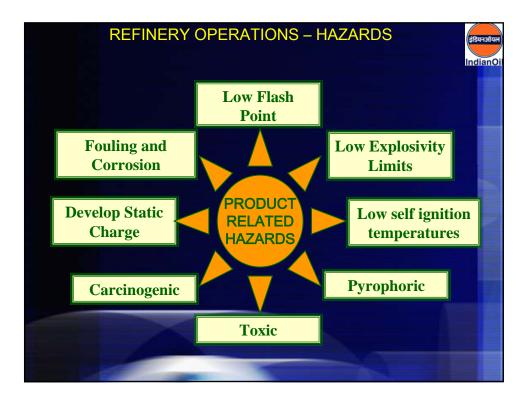












Phase Equilibria in Refinery Processes

Ratan Mohan

Department of Chemical Engineering I.I.T. Delhi, New Delhi

Thermodynamic data needs in process simulation

Phase equilibria

Stream properties ; enthalpy, entropy

Reaction equilibria ; Gibb's free energy of rxn, Eq. constt.

Basic Phase Equilibrium equation :

$$f_i^v = f_i^l \tag{1}$$

Where:

$$f_i^v =$$
 Fugacity of component *i* in the vapor phase
 $f_i^l =$ Fugacity of component *i* in the liquid phase

Applied thermodynamics provides two methods for representing the fugacities from the phase equilibrium relationship in terms of measurable state variables, the equation-of-state method and the activity coefficient method.

In the equation of state method:

$$f_i^v = \varphi_i^v y_i p \tag{2}$$

$$f_i^l = \varphi_i^l x_i p \tag{3}$$

With:

$$\ln \varphi_i^{\alpha} = -\frac{1}{RT} \int_{-\infty}^{V\alpha} \left[\left(\frac{\partial p}{\partial n_i} \right)_{T, V, n_{iej}} - \frac{RT}{V} \right] dV - \ln Z_m^{\alpha}$$
(4)

Hence,

$$\varphi_i^v y_i = \varphi_i^l x_i$$

Property Calculations :

• Fugacity coefficient:

$$f_i^v = \varphi_i^v y_i p \tag{13}$$

_

• Enthalpy departure:

$$\left(H_m - H_m^{ig}\right) = -\int_{\infty}^{V} \left(p - \frac{RT}{V}\right) dV - RT \ln\left(\frac{V}{V^{ig}}\right) + T\left(S_m - S_m^{ig}\right) + RT\left(Z_m - 1\right)$$
(14)

• Entropy departure:

$$\left(S_{m} - S_{m}^{ig}\right) = -\int_{\infty}^{V} \left[\left(\frac{\partial p}{\partial T}\right)_{v} - \frac{R}{V}\right] dV + R \ln\left(\frac{V}{V^{ig}}\right)$$
(15)

• Gibbs energy departure:

$$\left(G_m - G_m^{ig}\right) = -\int_{\infty}^{V} \left(p - \frac{RT}{V}\right) dV - RT \ln\left(\frac{V}{V^{ig}}\right) + RT\left(Z_m - 1\right)$$
⁽¹⁶⁾

• Molar volume:

Solve
$$p(T, V_m)$$
 for V_m .

Activity Coefficient method :

$$\varphi_i^{v} y_i p = x_i \gamma_i f_i^{*,l}$$

where

The liquid phase reference fugacity $f_i^{*,l}$ is computed as: $f_i^{*,l} = \varphi_i^{*,v} (T, p_i^{*,l}) p_i^{*,l} \Theta_i^{*,l}$

For non-condensing gaseous components :

$$\varphi_i^{\nu} y_i p = x_i \gamma_i^* H_i$$

Liquid property calculations :

Liquid phase: Liquid mixture enthalpy is computed as:

$$H_{m}^{l} = \sum_{i} x_{i} \left(H_{i}^{*,v} - \Delta_{vap} H_{i}^{*} \right) + H_{m}^{E,l}$$
(34)

Where:

$$H_i^{*,v} =$$
Pure component vapor enthalpy at T and vapor
pressure
 $\Delta_{vap}H_i^* =$ Component vaporization enthalpy

$$H_m^{E,l} = Excess liquid enthalpy$$

Excess liquid enthalpy $H_m^{E,l}$ is related to the activity coefficient through the expression:

$$H_m^{E,l} = -RT^2 \sum_i x_i \frac{\partial \ln \gamma_i}{\partial T}$$
(35)

Liquid mixture Gibbs free energy and entropy are computed as:

$$S_m^l = \frac{1}{T} \left(H_m^l - G_m^l \right) \tag{36}$$

$$G_m^l = G_m^v - RT \sum_i \ln \varphi_i^{*,l} + G_m^{E,l}$$
(37)

Where:

$$G_m^{E,l} = RT\sum_i x_i \ln \gamma_i \tag{38}$$

Liquid density is computed using an empirical correlation.

Equations of State :

Cubic EOS :

Redlich-Kwong(-Soave) based

Redlich-Kwong Standard Redlich-Kwong-Soave Redlich-Kwong-Soave Redlich-Kwong-ASPEN Schwartzentruber-Renon Redlich-Kwong-Soave-MHV2 Predictive SRK Redlich-Kwong-Soave-WS

Peng-Robinson based

Standard Peng-Robinson Peng-Robinson Peng-Robinson-MHV2 Peng-Robinson-WS

An example of this class of equations is the Soave-Redlich-Kwong equation of state (Soave, 1972):

$$p = \frac{RT}{(V_m - b)} - \frac{a(T)}{V_m(V_m + b)}$$
(45)

$$a = \sum_{i} \sum_{j} x_i x_j (a_i a_j)^{\frac{1}{2}} (1 - k_{a,ij})$$
$$b = \sum_{i} x_i b_i = \sum_{i} \sum_{j} x_i x_j \left(\frac{b_i + b_j}{2}\right)$$

Activity Coefficient Models :

Van Laar

Scatchard-Hildebrand

Margules

Redlich Kister

Wilson

NRTL

UNIQUAC

UNIFAC

- Non Random Two Liquid (NRTL) Model:
 - applicable to partially miscible as well as completely miscible systems
 - □ The NRTL equation for the excess Gibbs energy

$$\frac{g^E}{RT} = \sum_i x_i \frac{\sum_j x_j G_{ji} \tau_{ji}}{\sum_k x_k G_{ki}}$$

Activity coefficient in its generalized form is given by

$$\ln \gamma_i = \left[\frac{\partial (nG^E / RT)}{\partial n_i}\right]_{P,T,n_j}$$
$$\boxed{\ln \gamma_i = \frac{\sum_j \tau_{ji} G_{ji} x_i}{\sum_k G_{ki} x_k} + \sum_j \frac{x_j G_{ij}}{\sum_k G_{kj} x_k} \left(\tau_{ij} - \frac{\sum_k x_k \tau_{kj} G_{kj}}{\sum_k G_{kj} x_k}\right)}$$

contd...

• where: *i*, *j*, k = 1, 2, ..., c;

$$\tau_{ij} = \frac{(g_{ji} - g_{ii})}{RT} ;$$
$$G_{ji} = \exp(-\alpha_{ji}\tau_{ji}) ;$$

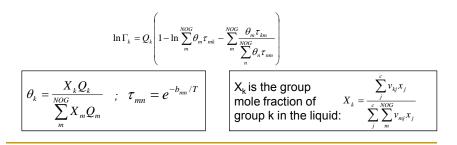
- UNIFAC (Universal Functional Activity Coefficient) method
 - estimates activity coefficients based on the group contribution concept
 - Excess Gibbs energy (and logarithm of the activity coefficient) as a combination of 2 effects-
 - 1. combinatorial term `
 - 2. residual term

$$\ln \gamma_i = \ln \gamma_i^{\ C} + \ln \gamma_i^{\ R}$$

$$\ln \gamma_i^C = \ln \left(\frac{\varphi_i}{x_i}\right) + \frac{z}{2} q_i \ln \left(\frac{\theta_i}{\varphi_i}\right) + l_i - \frac{\varphi_i}{x_i} \sum_{j=1}^{NOG} x_j l_j$$

where

$$\varphi_{i} = \frac{x_{i}r_{i}}{\sum_{j=1}^{c} x_{j}r_{j}}; \ \theta_{i} = \frac{x_{i}q_{i}}{\sum_{j=1}^{c} x_{j}q_{j}}; \ l_{i} = \frac{\overline{z}}{2}(r_{i} - q_{i}) - (r_{i} - 1)$$


$$r_{i} = \sum_{k=1}^{NOG} v_{k}^{i}R_{k}; \ q_{i} = \sum_{k=1}^{NOG} v_{k}^{i}Q_{k}$$

contd...

$$\ln \gamma_i^R = \sum_k^{NOG} v_i^k (\ln \Gamma_k - \ln \Gamma_k^i)$$

where

- Γ_k = residual activity coefficient of group k in the mixture
- Γ_kⁱ = residual activity coefficient of group k in a reference solution containing only molecules of type i.
- The parameters Γ_k and Γ_k^{i} are defined by:

Property methods for Petroleum mixtures :

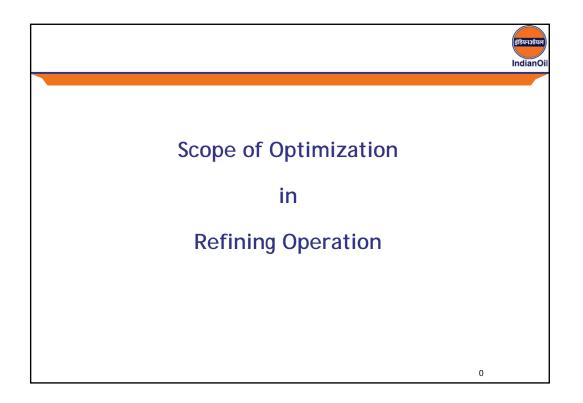
Liquid Fugacity and K-Value Models Property Method Name Models BK10 Braun K10 K-value model Chao-Seader liquid fugacity, Scatchard-CHAO-SEA Hildebrand activity coefficient GRAYSON/GRAYSON2 Grayson-Streed liquid fugacity, Scatchard-Hildebrand activity coefficient Maxwell-Bonnell liquid fugacity MXBONNEL Petroleum-Tuned Equations of State Property Method Name Models PENG-ROB Peng-Robinson RK-SOAVE Redlich-Kwong-Soave SRK Soave-Redlich-Kwong

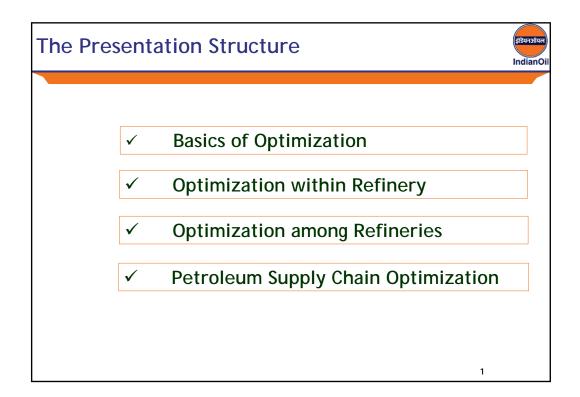
Eqn of State property methods for hydrocarbons at high pressure:

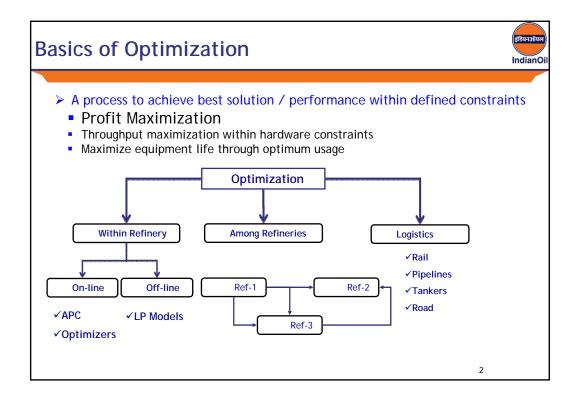
Property Method Name	Models
BWR-LS	BWR-Lee-Starling
BWRS	Benedict-Webb-Rubin-Starling
LK-PLOCK	Lee-Kesler-Plöcker
PR-BM	Peng-Robinson-Boston-Mathias
RKS-BM	Redlich-Kwong-Soave-Boston-Mathias

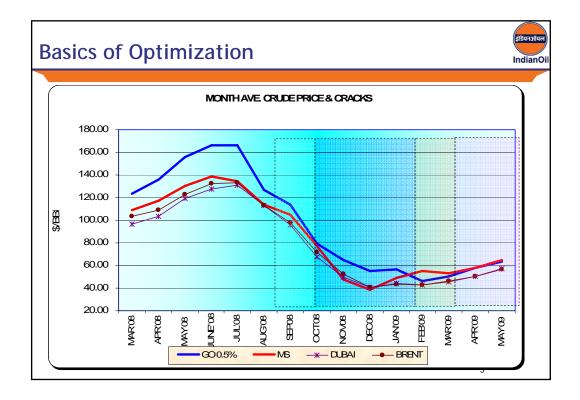
- Peng-Robinson (PR)
 - Most enhanced model in Aspen HYSYS
 - Largest applicability range in terms of T and P
 - Special treatments for some key components
 - Largest binary interaction parameter database
- PRSV
 - Modified PR model
 - Better representation of vapor pressure of pure components and mixtures
 - Extends applicability of the original PR model to moderately non-ideal systems
- SRK
 - Modified RK model
 - Can provide comparable results to PR in many cases, but with a lot less enhancement in Aspen HYSYS
- PR-Twu
- SRK-Twu
- Twu-Sim-Tassone (TST)
 - Modified equations of state models for hydrocarbon systems-non ideal systems (used for glycol package)
- Generalized Cubic Equation of State (GCEOS)
 - Provides a framework which allows users to define and implement their own generalized cubic equation of state including mixing rules and volume translation
- MBWR
 - Modified BWR model
 - Having 32 parameters, this model works extremely well with a number of pure components within specified T and P ranges
- Lee-Kesler-Plöcker
 - Also a modified BWR model for non-polar substances and mixtures
- BWRS
 - Modified BWR to handle multi components
 - Requires experimental data

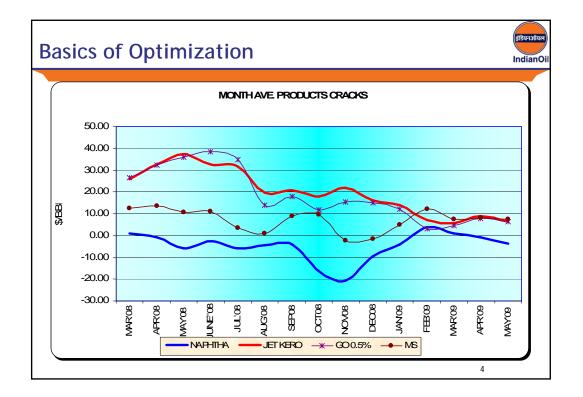
- Zudkevitch Joffee
 - Modified RK model with better prediction of VLE for hydrocarbon systems, and systems containing hydrogen
- Kabadi-Danner
 - Modified SRK model with the enhancement to improve the VLE calculations for H2O-hydrocarbon systems, particularly in dilute regions
- Sour PR/Sour SRK
 - Used for sour water systems containing H2S, CO2, and NH3 at low to moderate pressures

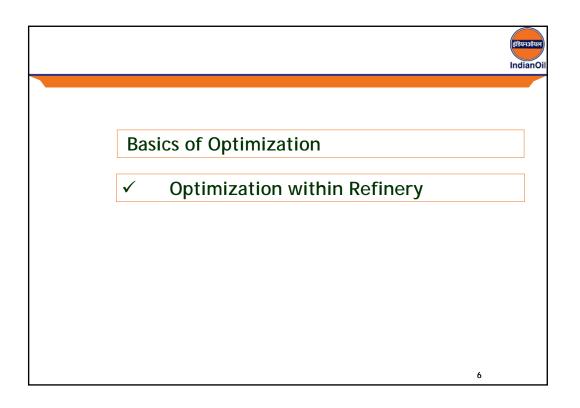

Semi-empirical Models :

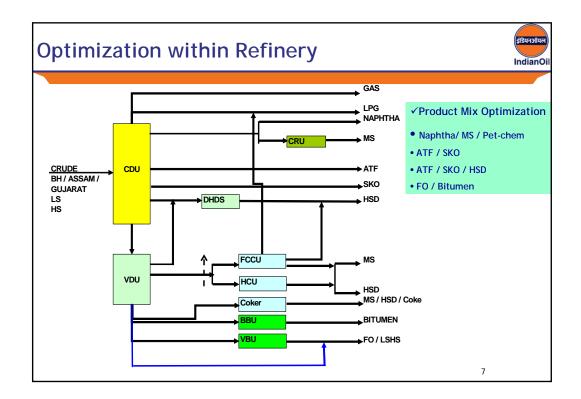

- · Chao-Seader model
 - Applicable to hydrocarbon systems in the range of T=0-500C, and P<10,000 kPa
- Grayson-Streed model
 - An extension to the Chao-Seader model with special emphasis on H2
 - Recommended for heavy hydrocarbon systems with high H2 content, such as hydrotreating units

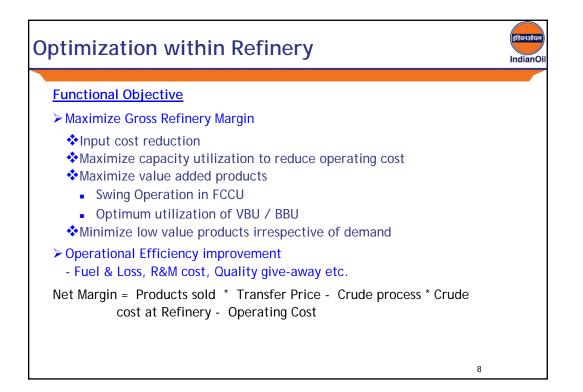

- Hydrocarbon systems up to distillate range hypo components
 - PR, SRK or any other EOS*
- Vacuum columns GS, PR or BK10
- Sour gas sweetening with Amines
- Sour water treatment process Sour PR/SRK
- Clean fuels for sulfur components and hydrocarbons
- High H2 content systems GS, PR
- Utility systems using H2O Steam Table

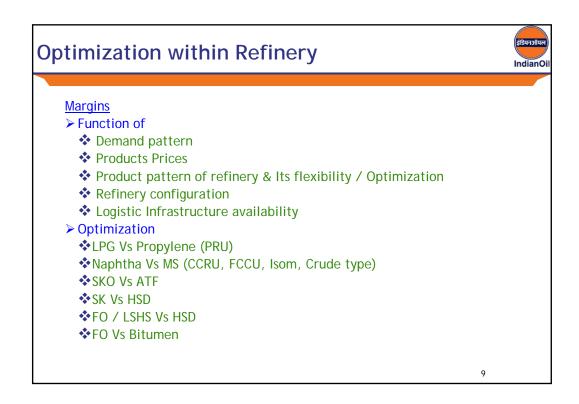

Refinery Processes :

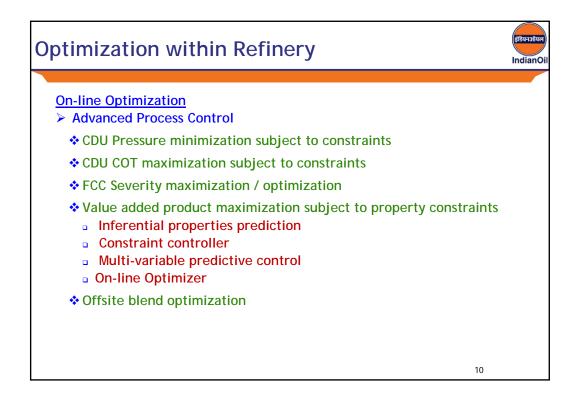

Application	Recommended Property Method
Low pressure applications(up to several atm) Vacuum tower Atmospheric crude tower	Petroleum fugacity and K-value correlations (and assay data analysis)
Medium pressure applications (up to several tens of atm) Coker main fractionator FCC main fractionator	Petroleum fugacity and K-value correlations Petroleum-tuned equations of state (and assay data analysis)
Hydrogen-rich applications Reformer Hydrofiner	Selected petroleum fugacity correlations Petroleum-tuned equations of state (and assay data analysis)
Lube oil unit De-asphalting unit	Petroleum-tuned equations of state (and assay data analysis)
Gas Processing	
Application	Recommended Property Method
Hydrocarbon separations Demethanizer C3-splitter	Equations of state for high pressure hydrocarbon applications (with kij)
Cryogenic gas processing Air separation	Equations of state for high pressure hydrocarbon applications Flexible and predictive equations of state
Gas dehydration with glycols	Flexible and predictive equations of state
Acid gas absorption with Methanol (rectisol) NMP (purisol)	Flexible and predictive equations of state
Acid gas absorption with Water Ammonia Amines Amines + methanol (amisol) Caustic Lime Hot carbonate	Electrolyte activity coefficients
Claus process	Flexible and predictive equations of state

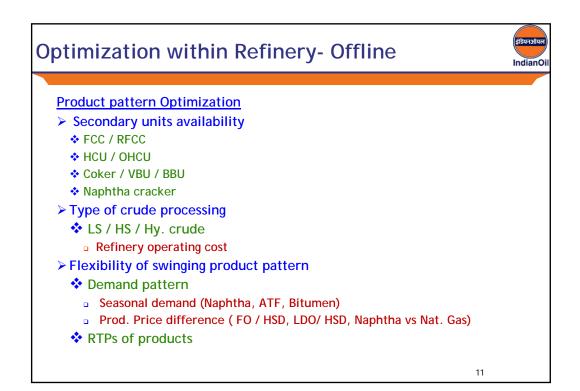


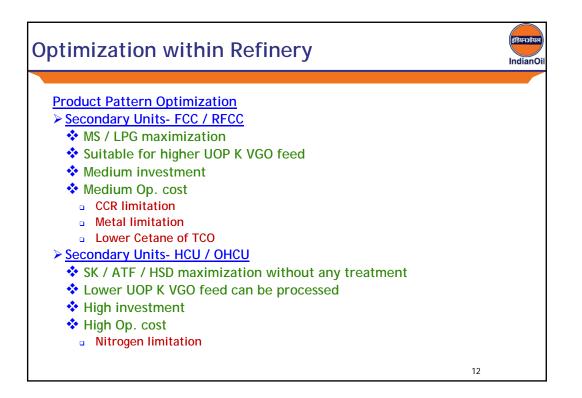


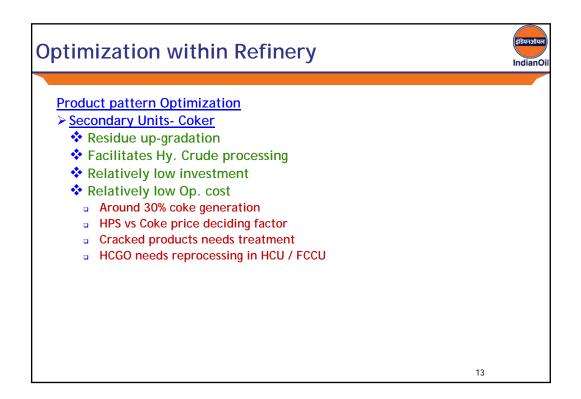


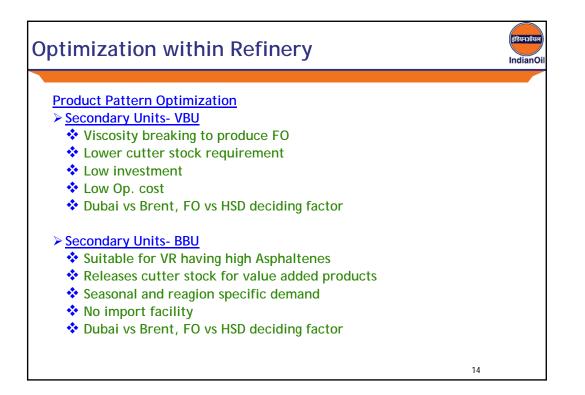


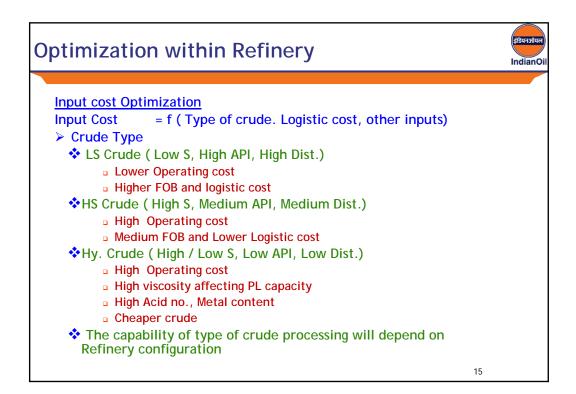

Basics of C	Optimization	इंडियनऑयल IndianOil
 Optimization Profit Maximi 	zation	
	aximization within hardware constrainits	
 Maximize equ 	ipment life through optimum usage	
➤ Ref. Profit	=Prod. Realization - Input Cost - Operating cost	
	= Sum(Qi*Pi) - Sum(Ci*pi) - Sum (Fi*Ui) - Losses	
Qi (Prod. qty)	= f (Type of crude, Process Configuration, Demand Pattern) => Under Control	
Pi (Prod. Price)	= f (Demand -> domestic, International)	
	=> Little control	
pi (Crude Cost)	= f (Global demand (Premium/Disc), Location of Ref. & Crude so => No control	urce)
Ci (Crude Type)	= f (Production rate, Global demand, Political scenario)=> Under control	
	5	

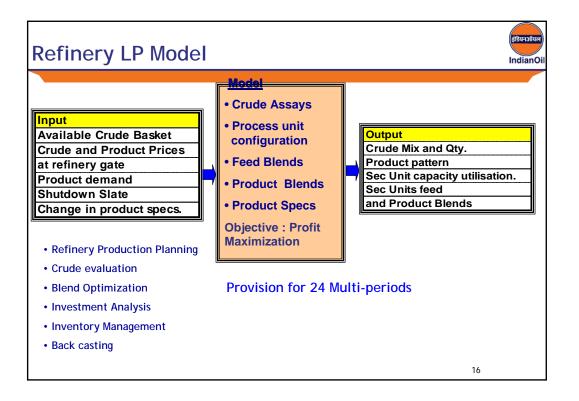


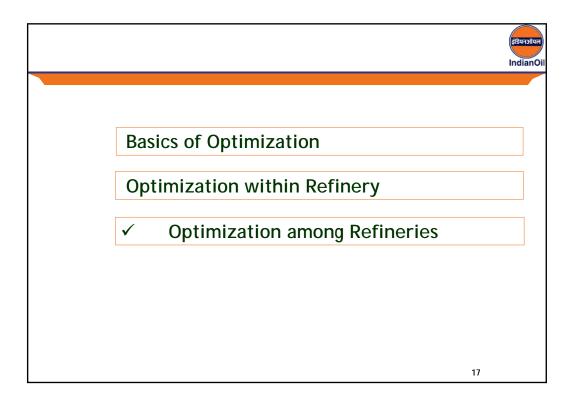


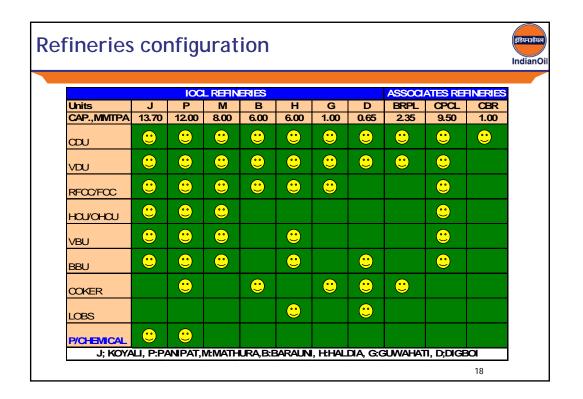


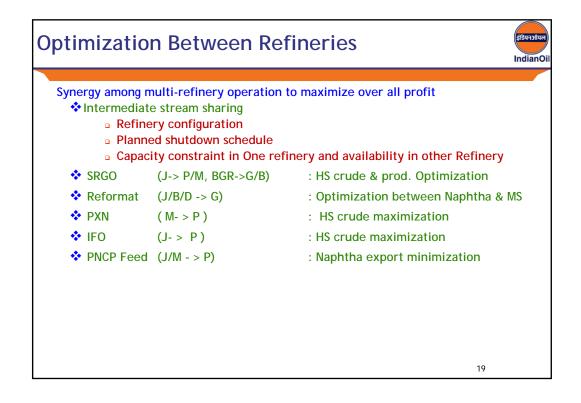


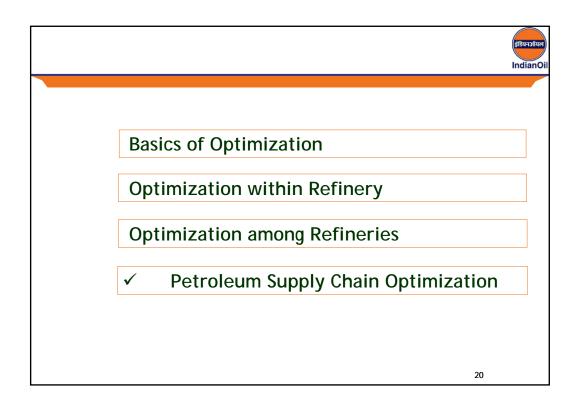


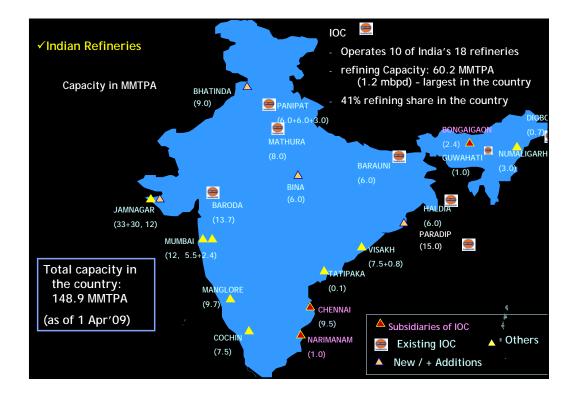


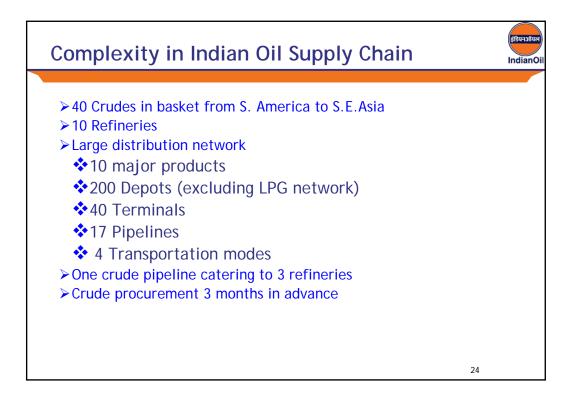


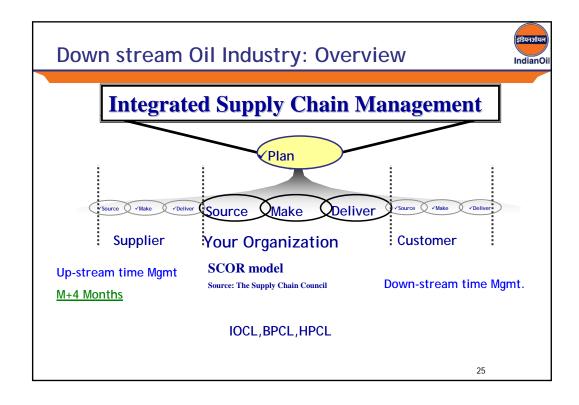


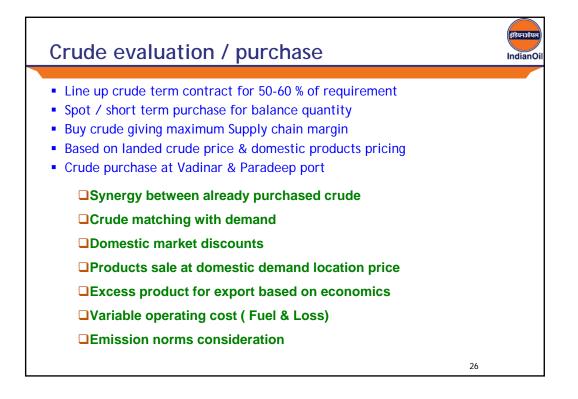


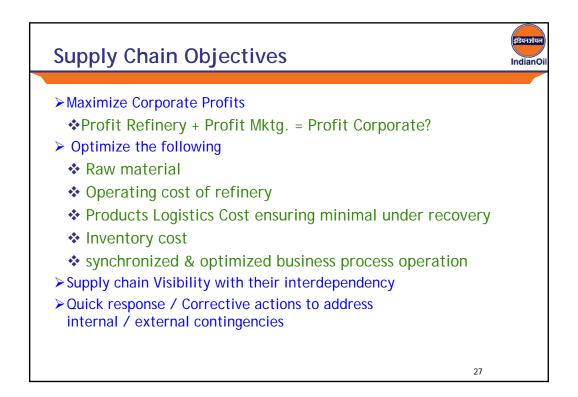


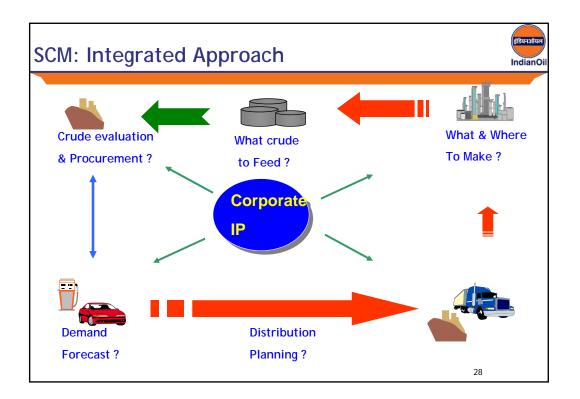


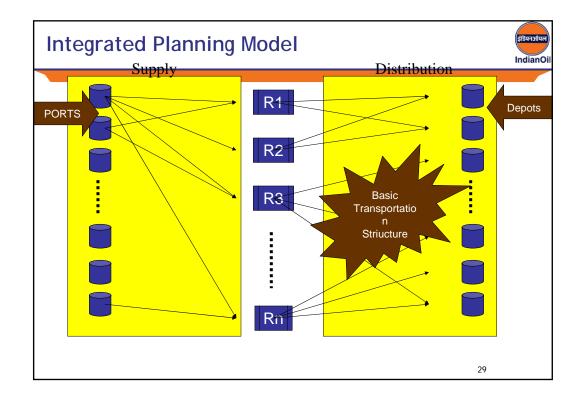




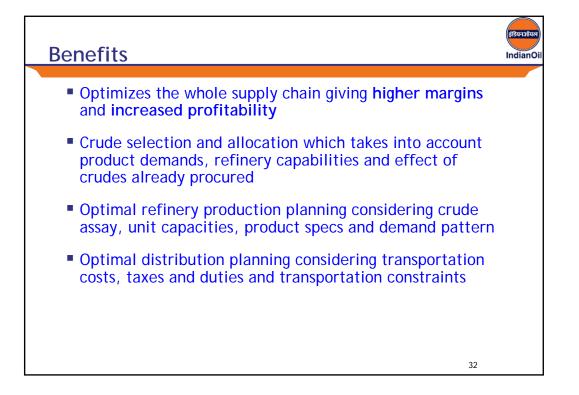




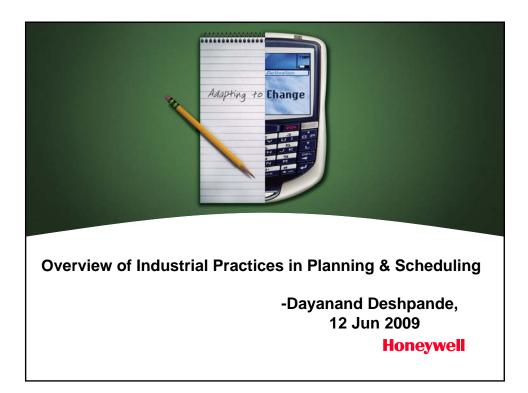

Infrastructure	(fgaasiaa) IndianOil
 Crude Vadinar / Mundra port (VLCC) for North-West Refineries SMPL for Gujarat, Panipat & Mathura Mundra for Panipat Haldia Port for East coast Refineries Lower Draft and port congestion HBCPL for Barauni Refinery 	
 Commissioning of Paradeep- Haldia crude pipeline <u>Product</u> Demand growth in North West Sector Euro-III products & ATF demand in Metro cities Product movement from East to North-West Limited export facility at Haldia port Dahej / Kandla for Naphtha Export 	
No Import / Export facility for ATF and Bitumen	23



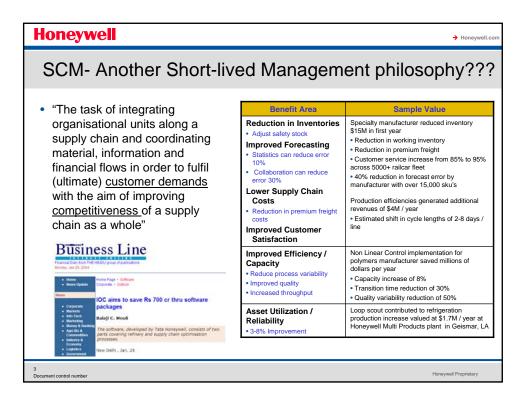
Integrated Planning (IP) Model

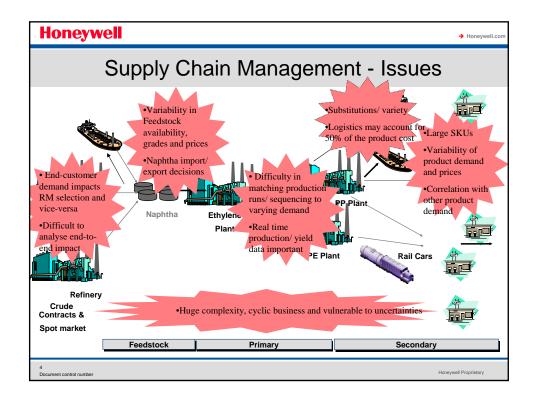

Input	Output		
- Crude Availability at Ports	- Refinery wise Tput & Crude Alocation		
- Location level Demand	- Crude requirement for future period		
- Desired Inventory build up / depletion	- Refinery wise Product Pattern		
- Committed Exports, Imports	- Detailed Distribution Plan		
- Exchangeswith OMCs	Product wise, mode wise		
- Planned Shutdown schedule	- Purchases, Exchanges		
- Changes in product specs.	- Gross Margin		
- Crude Prices / Purchase Cost			
- Product Prices			

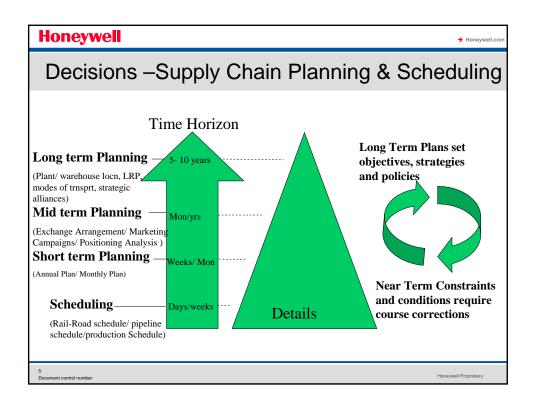
Objective : Profit Maximisation

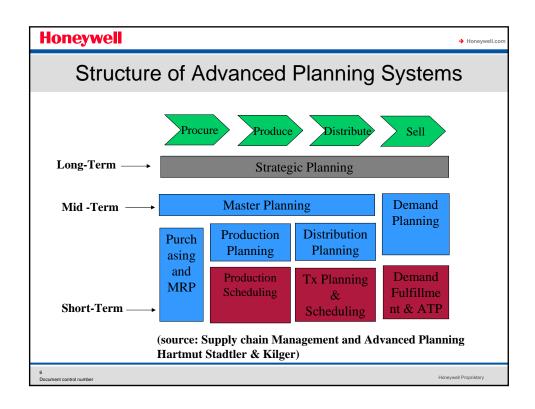

Provision of Multi-period planning

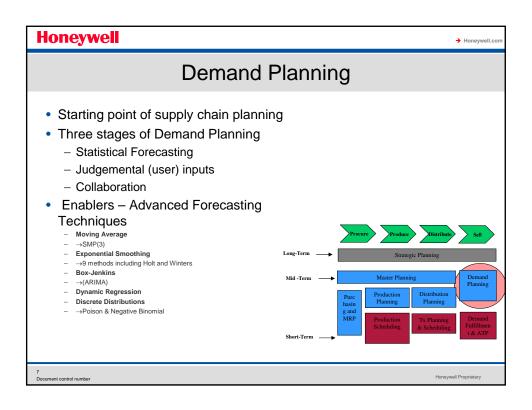
30

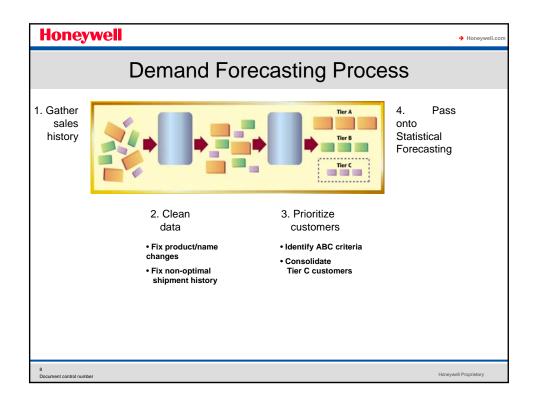

efinery Planning, PMS2500 - 55006000 - 14500istribution2500 - 55008500 - 19000	Models	Constraints	Variables
PMS 2500 - 5500 8500 - 19000		(No of Rows)	(No of Columns)
	efinery Planning, PMS	2500 - 5500	6000 - 14500
······································	istribution lanning, SAND	2500 - 5500	8500 - 19000
ntegrated Planning 23000 63000	tegrated Planning	23000	63000

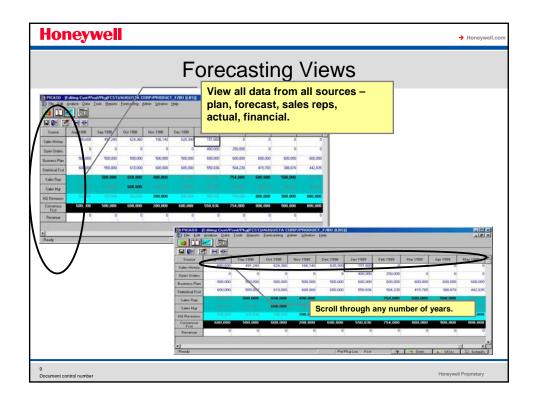


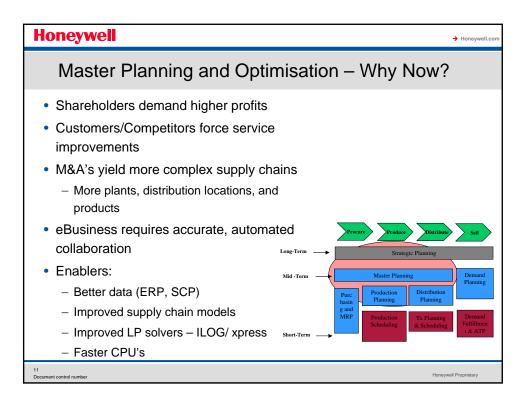


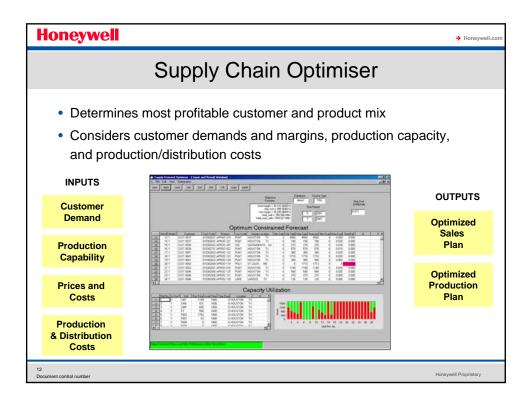


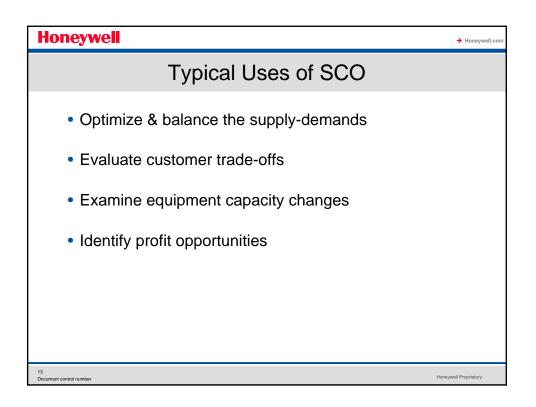


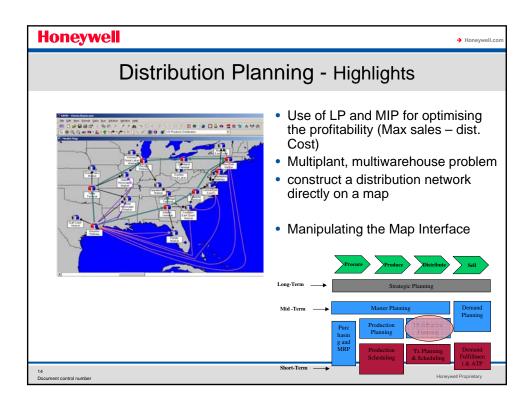


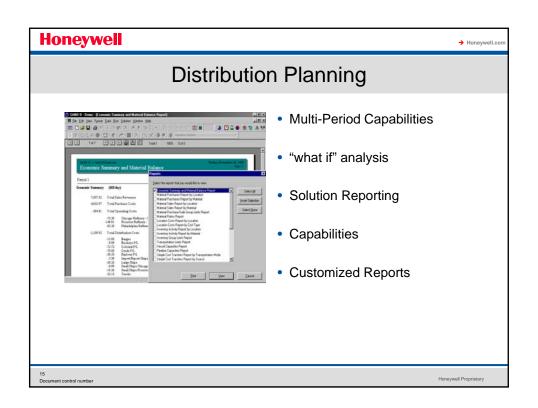


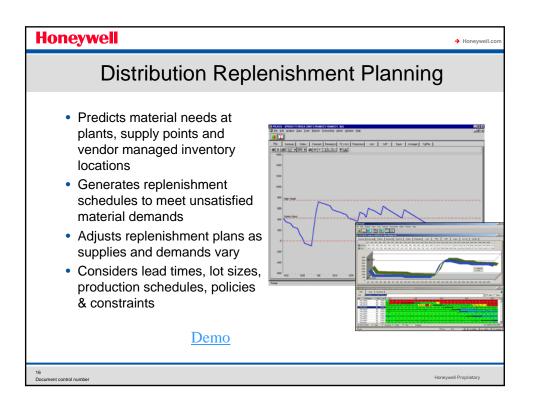


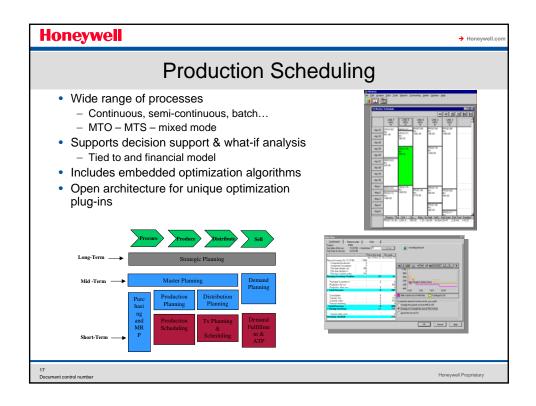


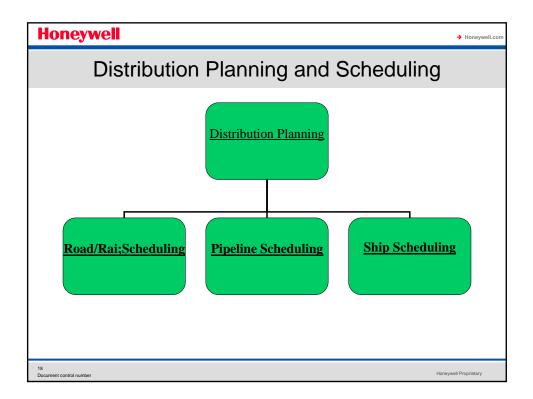


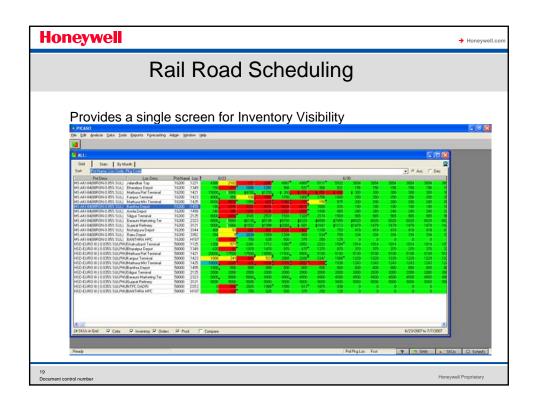


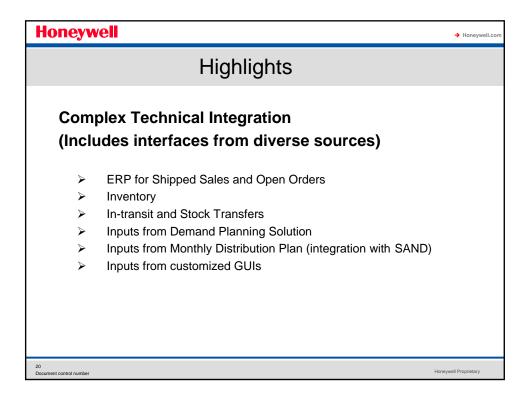

loney	well									→ Ho	neyw
		Сс	ollab	orat	ive F	ore	cast	ing			
	Editing Cust/Pr	od/Pka(FCST)		DRP/PRODUC	T F/RU (LRS)						
	<u>A</u> nalyze <u>D</u> ata									-15	
	2 👼										
Source	Aug 1998	Sep 1998	Oct 1998	Nov 1998	Dec 1998	Jan 1999	Feb 1999	Mar 1999	Apr 1999	May 1999	-
Sales History	650,600	491,240	624,360	166,140	620,300	151,660	0 0	0	0		0
Open Orders	0	0	0	0	/	400	Statistic	s as a s	tart		0
Business Plan	500,000	500,000	500,000	500,000	500,000	600,000				00.003	P
Statistical Fost	600,000	550,000	610,000	600,000	\$80,000	550,8	Entered	by Sale	es Rep		ŀ
Sales Rep	600,000	500,000	650,000	400,000*	180.000		754 000	000 003		-	
Sales Mgr			600,000	400.000	660.000	390	Sales Mg	gr auto	accepte	d	•
HQ Revisions				200,000 -	680,000	550.000	764.000	- 000 000	000 000		0
Consensus Fost	600,000	500,000	600,000	200,000	680,000	550,1	HQ revis	ed		0	0
Revenue	0	0	0	0	0	ľ	C	aura al at			
	1			<u> </u>	l		Consen	sus aet	ermined		_
•										<u> </u>	•
Ready					Prd F	kg Loc Fos	Ť	📑 Grids	📕 🛋 SKUs	I Sched	's
											_
	ır									Honeywell Propri	

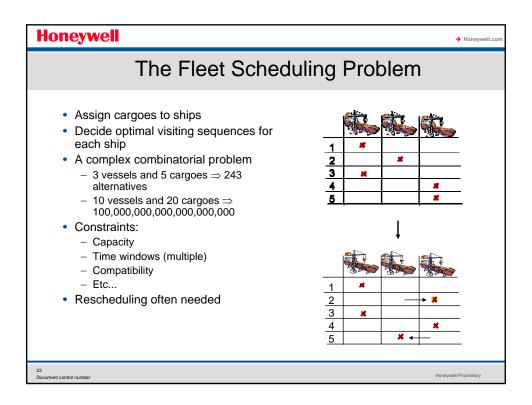


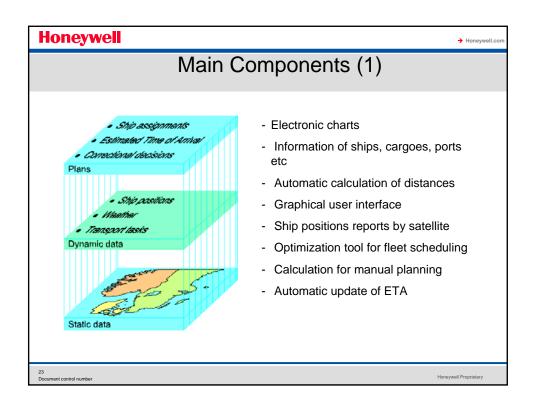


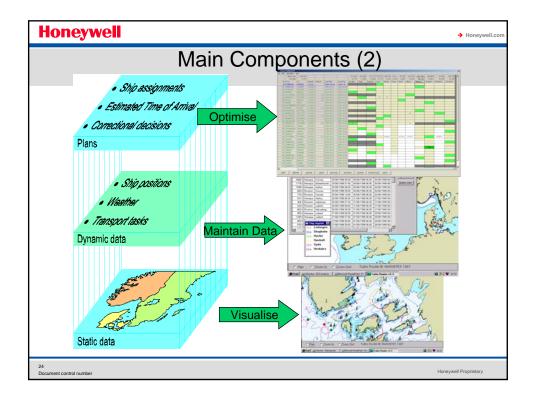


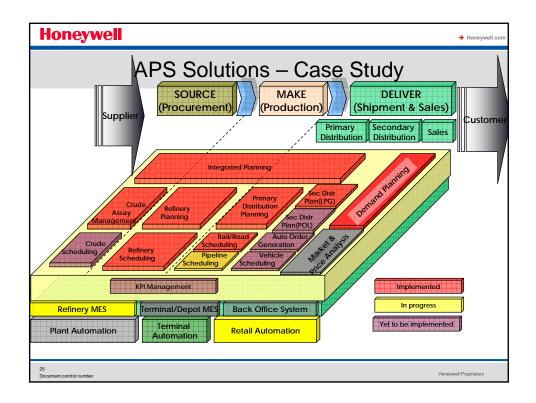


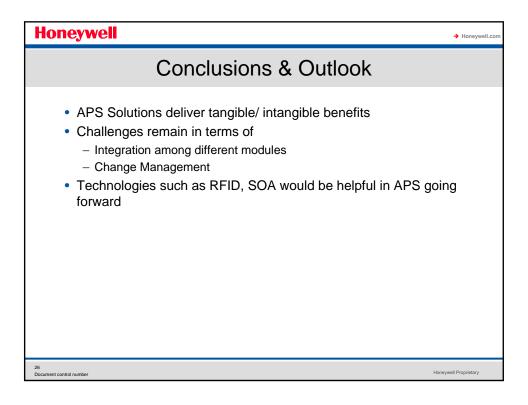


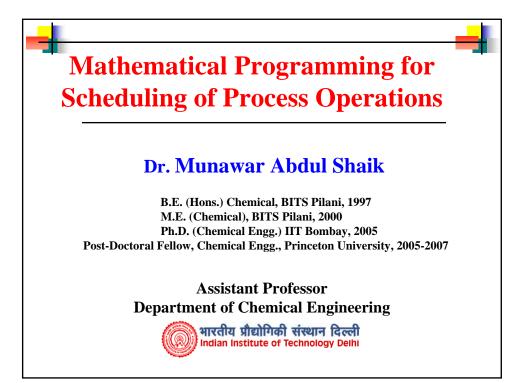


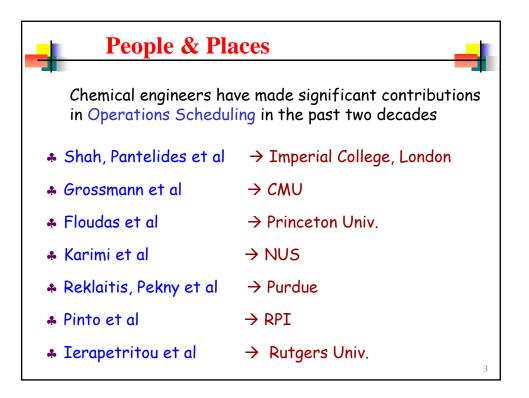


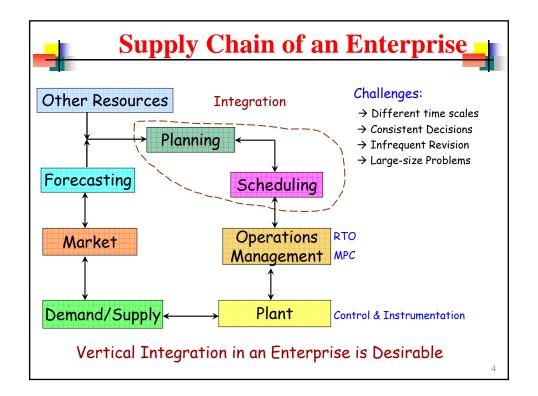


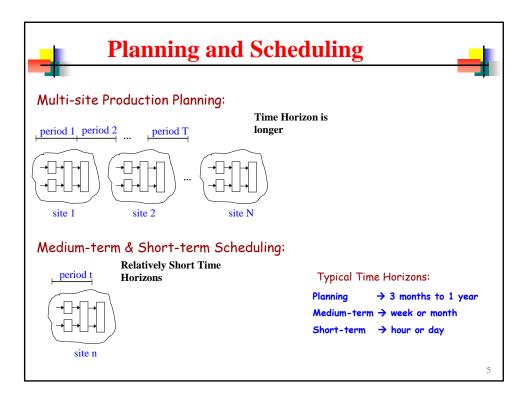


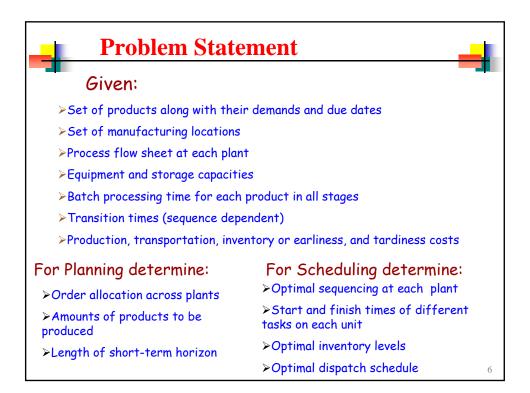

Honeywell	➔ Honeywell.com
Fleet Scheduling and Management Syste	em
Pipeline Pol Sea transport Pol Pipeline Processing	Grid
 System for Fleet Scheduling & Optimization Fleet management LNG and other refined products Contract management Update Schedule and Annual Delivery Program (ADP) Replenishment Operational Decision Support and Re-planning of Operations 	
21 Document control number Honey	well Proprietary

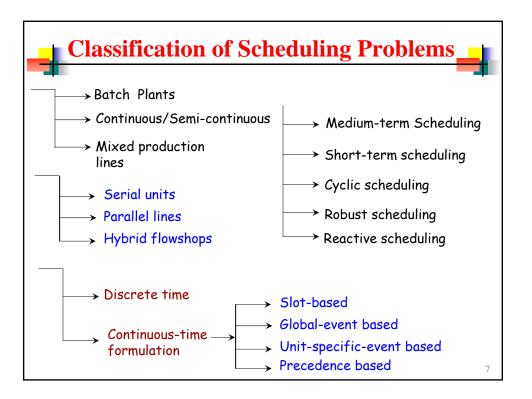


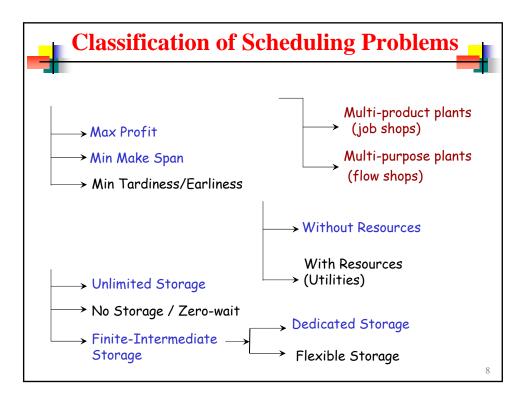


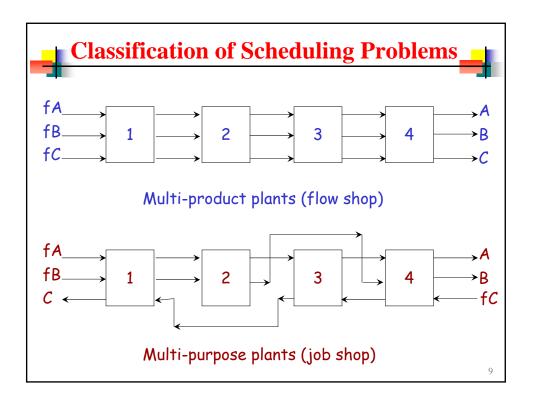


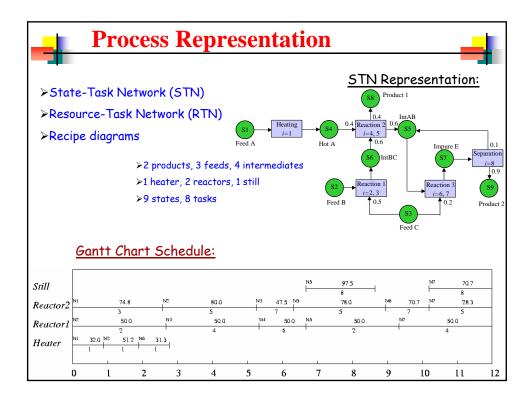


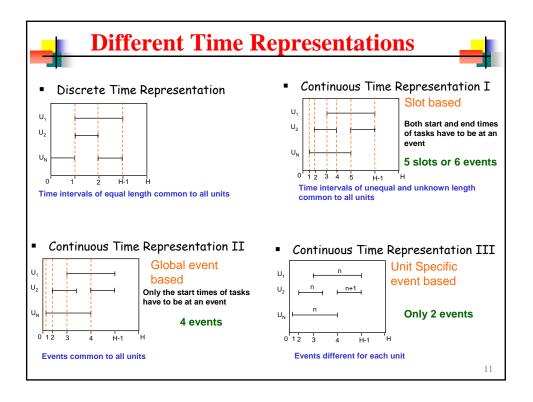


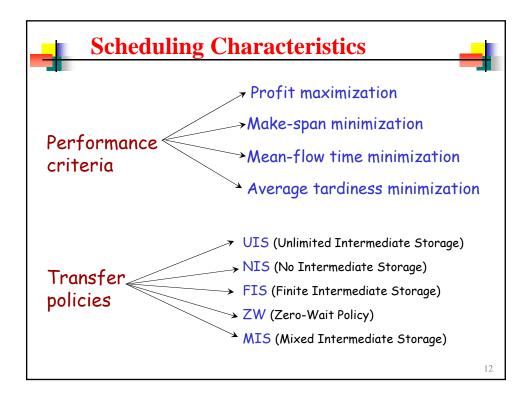


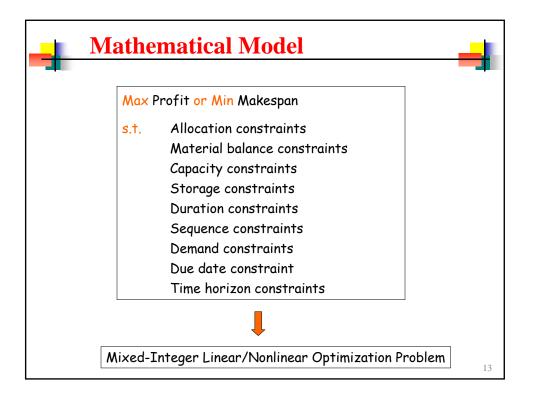


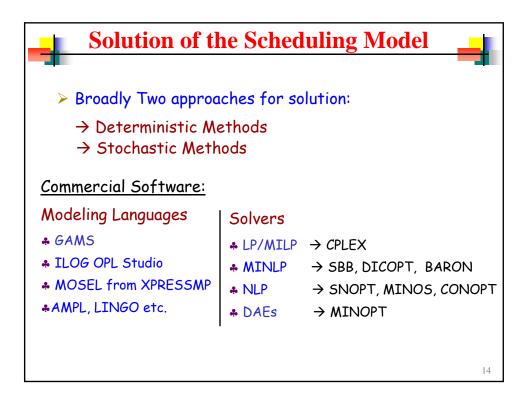


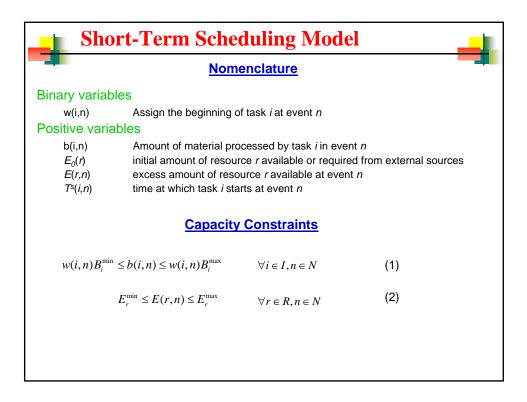


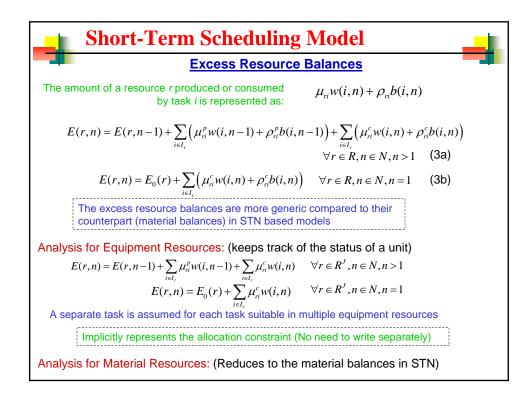


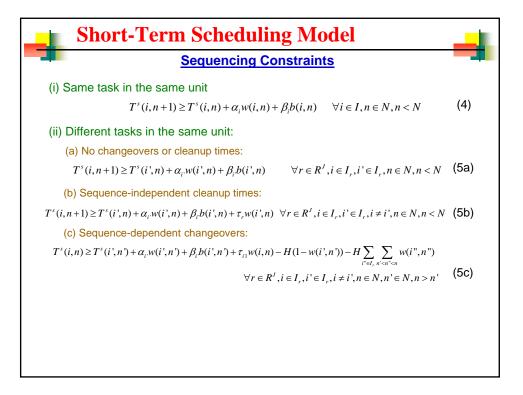


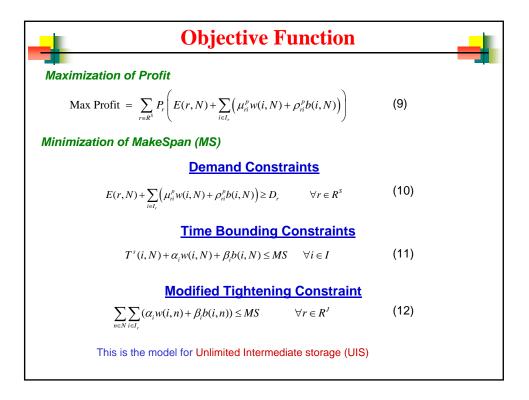


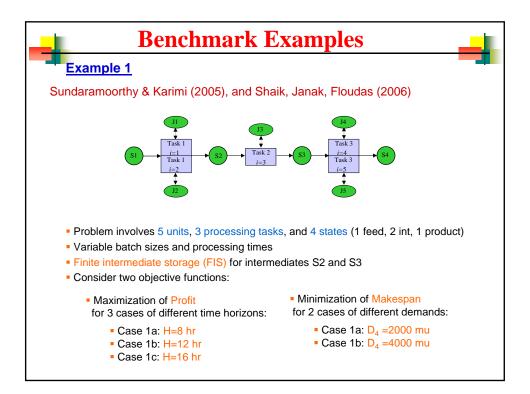


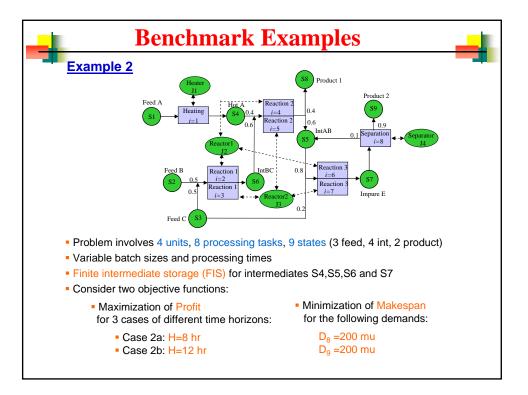


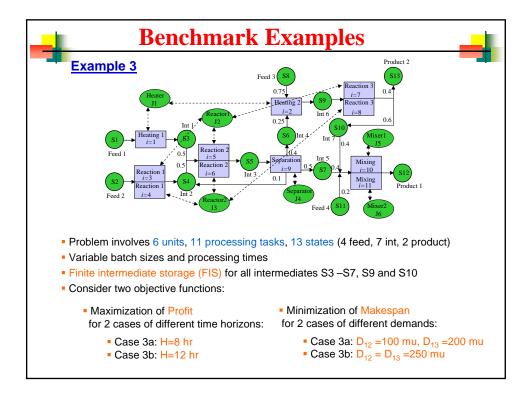





	Short-Term Scheduling Model
	Nomenclature
Sets	
1	tasks
I _r	tasks related to resource r
R	resources
R ^J	equipment resources
R ^s	material resources
R ^{FIS}	material resources with finite dedicated storage
Ν	event points within the time horizon
Para	meters
Н	scheduling horizon
P _r	price of resource r
D _r	demand for resource r
τ_r	sequence independent clean up time
$egin{array}{l} au_{ii'} \ E_r^{\min} \ E_r^{\max} \ E_r^{\max} \end{array}$	sequence-dependent clean up time required between tasks <i>i</i> and <i>i</i>
E_r^{\min}	lower bound on the availability of resource r
E_r^{\max}	upper bound on the availability of resource r
$\mu^{\scriptscriptstyle p}_{\scriptscriptstyle ri}$, $\mu^{\scriptscriptstyle c}_{\scriptscriptstyle ri}$	proportion of equipment resource produced, consumed in task <i>i</i> , $\mu_{ri}^{p} \ge 0$, $\mu_{ri}^{c} \le 0$
$ ho_{\it ri}^{\it p}$, $ ho_{\it ri}^{\it c}$	proportion of material resource produced, consumed in task <i>i</i> , $\rho_{ri}^{p} \ge 0$, $\rho_{ri}^{c} \le 0$

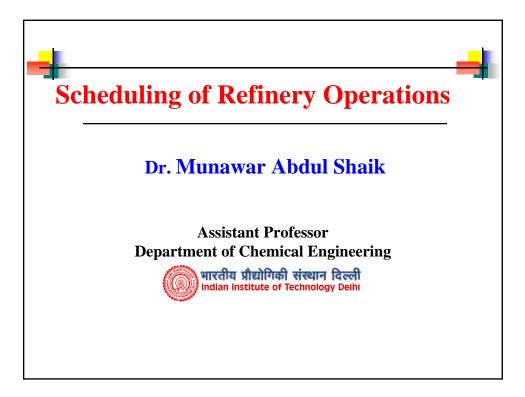


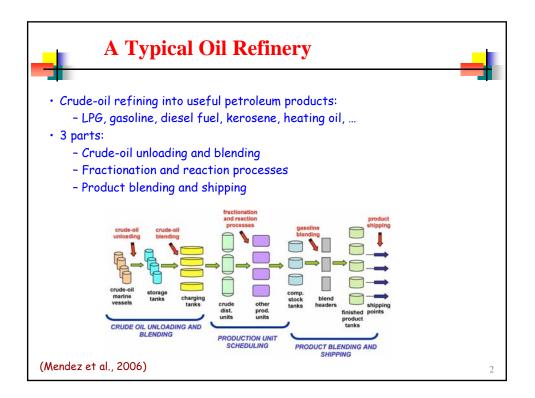


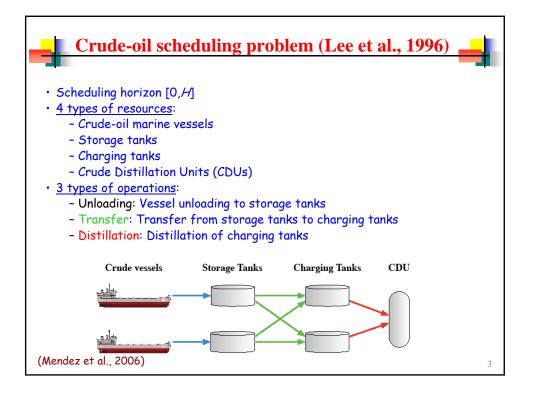


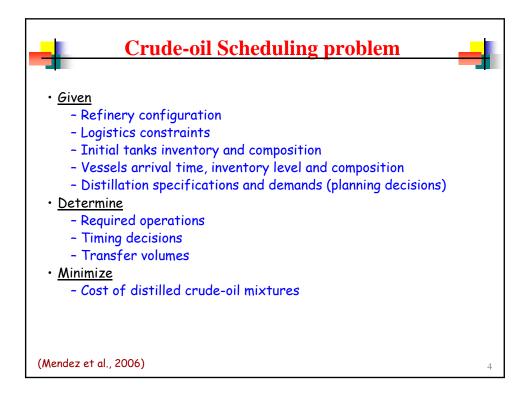
Short-Term Scheduling Model	_								
Sequencing Constraints									
(iii) Different tasks in different units:									
$T^{s}(i, n+1) \ge T^{s}(i', n) + \alpha_{i'}w(i', n) + \beta_{i}b(i', n) - H(1 - w(i', n))$									
$\forall r \in R^{s}, i' \in I_{r}, i \in I_{r}, i \neq i', \rho_{n'}^{p} > 0, \rho_{n'}^{c} < 0, n \in N, n < N $ (6)									
Time Bounding Constraints									
$T^{s}(i,n) \le H \qquad \forall i \in I, n \in N $ (7a)	a)								
$T^{s}(i,N) + \alpha_{i}w(i,N) + \beta_{i}b(i,N) \le H \qquad \forall i \in I $ (7)	b)								
Tightening Constraint									
$\sum_{n \in N} \sum_{i \in I_r} (\alpha_i w(i, n) + \beta_i b(i, n)) \le H \qquad \forall r \in \mathbb{R}^J $ (8)	3)								
The tightening constraint provides a better LP relaxation									

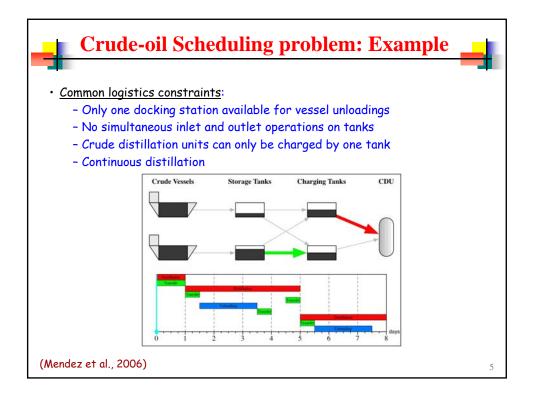
Benchmark Examples							
Data of coe	fficients o	of prod	cessing time	es of task	s. limits or	batch	sizes of unit
				00 01 10.011	0,		0.100 0.1 0.1.1.
	Task		Unit	α_{ii}	β_{ii}	B_{ij}^{\min}	B_{ij}^{\max}
	i		i	ŋ	, ŋ	(mu)	(mu)
	Task1	(<i>i=</i> 1)	Únit1	1.333	0.01333		100
		(i=2)	Unit2	1.333	0.01333		150
ample 1		(<i>i=</i> 3)	Unit3	1.000	0.00500		200
		(i=4)	Unit4	0.667	0.00445		150
		(<i>i=</i> 5)	Unit5	0.667	0.00445		150
	Heating	(<i>i=</i> 1)	Heater	0.667	0.00667		100
	Reaction1	(i=2)	Reactor1	1.334	0.02664		50
		(i=3)	Reactor2	1.334	0.01665		80
ample 2	Reaction2	(i=4)	Reactor1	1.334	0.02664		50
		(i=5)	Reactor2	1.334	0.01665		80
	Reaction3	(i=6)	Reactor1	0.667	0.01332		50
		(i=7)	Reactor2	0.667	0.008325		80
	Separation	(<i>i=</i> 8)	Separator	1.3342	0.00666		200
	Heating1	(<i>i=</i> 1)	Heater	0.667	0.00667		100
	Heating2	(i=2)	Heater	1.000	0.01000		100
	Reaction1		Reactor1	1.333	0.01333		100
		(i=4)	Reactor2	1.333	0.00889		150
	Reaction2	(i=5)	Reactor1	0.667	0.00667		100
ample 3		(i=6)	Reactor2	0.667	0.00445		150
1.1	Reaction3	(i=7)	Reactor1	1.333	0.01330		100
		(i=8)	Reactor2	1.333	0.00889		150
	Separation	n (<i>i=</i> 9)	Separator	2.000	0.00667		300
	Mixing	(<i>i=</i> 10)	Mixer1	1.333	0.00667	20	200
	-	(i=11)	Mixer2	1.333	0.00667	20	200

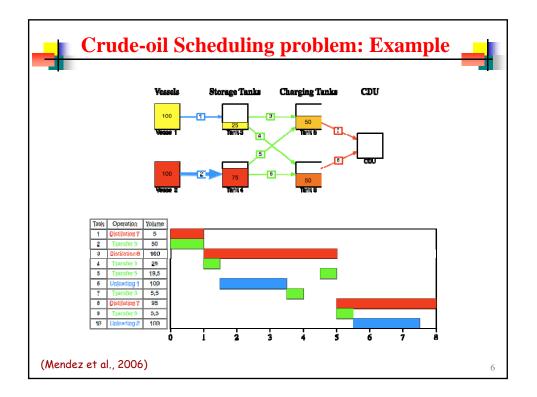

	1 51014	ye cap	acities, in	ITIAI STOCK	levels	and pric	es of vario	ous rese	ources	
	Example 1			Exa	Example 2			Example 3		
Resource	Storage capacity (mu)	Initial stock (mu)	Price (\$/mu)	Storage capacity (mu)	Initial stock (mu)	Price (\$/mu)	Storage capacity (mu)	Initial stock (mu)	Price (\$/mu)	
S 1	UL	AA	0	UL	AA	0	UL	AA	0	
S2	200	0	0	UL	AA	0	UL	AA	0	
S3	250	0	0	UL	AA	0	100	0	0	
S4	UL	0	5	100	0	0	100	0	0	
S5				200	0	0	300	0	0	
S6				150	0	0	150	50	0	
S7				200	0	0	150	50	0	
S8 S9					0	10 10	UL 150	AA	0	
59 S10				UL	0	10	150	0	0	
S10							UL	AA	0	
S12	-					-	UL	0	5	
S12							UL	Ö	5	

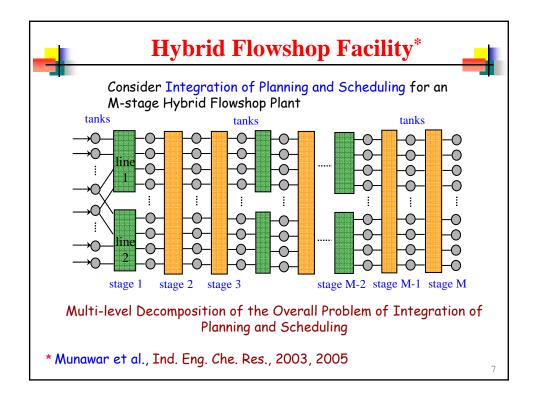

Other models used in Comparative St	tudy
Comparison based on our own implementation & same software and hardware	Abbreviation used
STN:	used
Ierapetritou, M. G.; Floudas, C. A. Effective continuous-time formulation for short-term scheduling: 1. Multipurpose batch processes. <i>Ind. Eng. Chem.</i> <i>Res.</i> 1998 , <i>37</i> , 4341. UIS	I&F
Lin, X.; Floudas, C. A. Design, synthesis and scheduling of multipurpose batch plants via an effective continuous-time formulation. <i>Comput. Chem. Eng.</i> 2001 , <i>25</i> , 665. FIS	L&F
RTN:	
Castro, P. M.; Barbosa-Povoa, A. P.; Matos, H. A.; Novais, A. Q. Simple continuous-time formulation for short-term scheduling of batch and continuous processes. <i>Ind. Eng. Chem. Res.</i> 2004, <i>43</i> , 105.	CBMN
Shaik, M. A.; Floudas, C. A. Unit-specific event-based continuous-time approach for short-term scheduling of batch plants using RTN framework. <i>Comput. Chem. Eng.</i> 2008, <i>32</i> , 260.	S&F
Recipe Diagrams:	
Sundaramoorthy, A.; Karimi, I. A. A simpler better slot-based continuous-time formulation for short-term scheduling in multipurpose batch plants. <i>Chem.</i> <i>Eng. Sci.</i> 2005, <i>60</i> , 2679.	S&K

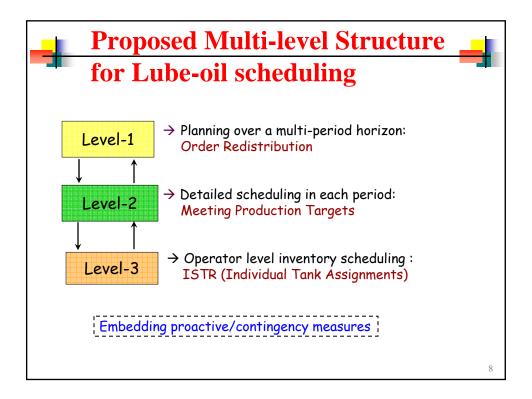

			Exa	ample	1	<u> </u>	Maximiza	ation c	of Profit
Nodel	Events	CPU time (s)	Nodes	RMILP (\$)	MILP (\$)	Binary variables	Continuous variables	Constra	ints Nonzeros
Example 1a (F	1=8)				. ,				
S&K	5	0.05	13	2000.0	1840.2	40	215	192	642
CBMN(∆t=1)	5	0.01	0	2000.0	1840.2	20	70	86	274
(∆t=2)	5	0.02	7	2000.0	1840.2	35	85	116	414
I&F	4	0.01	1	2000.0	1840.2	10	48	69	176
S&F	4	0.01	1	2000.0	1840.2	10	68	84	239
Example 1b (I	H=12)								
S&K	9	26.83	27176	4481.0	3463.6	80	415	408	1358
CBMN(∆t=1)	9	0.23	606	4419.9	3301.6	40	130	162	546
(∆t=2)	9	10.32	21874	5237.6	3463.6	75	165	232	886
I&F	6	0.03	24	4000.0	3463.6		76	115	314
	7	0.19	589	4857.6	3463.6		90	138	383
S&F	6	0.02	28	4000.0	3463.6	20	106	130	427
	7	0.23	720	4701.8	3463.6	25	125	153	521
Example 1c (F	1 =16)								
S&K	12	5328.22	3408476	6312.6	5038.1		565	570	1895
	13	>67000 ^b	36297619	6381.9	5038.1		615	624	2074
CBMN(∆t=2)	12	1086.08	1642027	7737.6	5000.0		225	319	1240
(∆t=3)	12	3911.14	4087336	7737.6	5038.1		270	409	1680
(∆t=3)	13	40466.83	44252075	8237.6	5038.1		295	448	1848
I&F	9	1.76	6596	6601.5	5038.1		118	184	521
	10	20.60	89748	6601.5	5038.1		132	207	590
S&F	9	1.46	5487	6600.9	5038.1		163	199	709
	10	21.76	91080	6601.7	5038.1	40	182	222	803

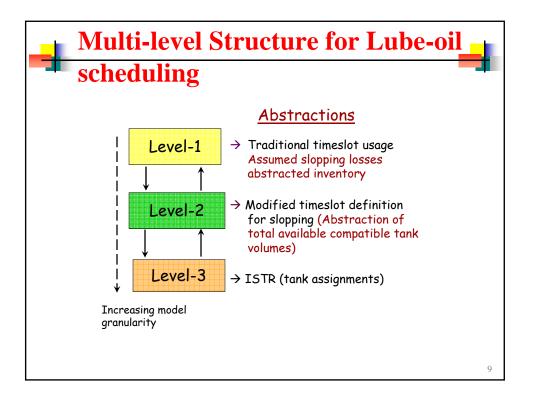

			Exa	ample	2	1	Maximiza	ation of P	rofit
lodel	Events	CPU time (s	Nodes	RMILP (\$)		Binary variables	Continuous variables	Constraints I	Nonzeros
<i>Example</i> 2a (H	l=8)								
S&K	5	0.07	4	1730.9	1498.6	48	235	249	859
CBMN(∆t=1)	5	0.01	4	1730.9	1498.6	32	104	114	439
I&F	4	0.03	13	1812.1	1498.6	18	90	165	485
	5	0.28	883	2305.3	1498.6		115	216	672
S&F	4	0.03	10	1730.9	1498.6	18	106	173	564
	5	0.23	681	2123.3	1498.6	26	135	224	783
Example 2b (F	l =10)								
S&K	8	105.5	88679	2690.6	1962.7		433	456	1615
CBMN(∆t=1)	8	1.82	6449	2690.6	1860.7		170	189	760
(∆t=2)	8	81.95	194968	3136.3	1959*		218	261	1238
(∆t=3)	8	207.43	366226	3136.3	1962.7	144	258	321	1635
l&F	6	2.16	6713	3078.4	1943.2		140	267	859
	7	43.73	101415	3551.8	1943.2		165	318	1046
S&F	6	1.79	5180	2730.7	1943.2		164	275	1002
	7	36.28	89069	2780.2	1943.2	ª 42	193	326	1221
<i>Example</i> 2c (H	l=12)								
S&K	9	561.58	288574	3265.2	2646.8	96	499	525	1867
	10	10889.61	3438353	3315.8	2646.8		565	594	2119
	11	>67000 ^b	17270000	3343.4	2646.8		631	663	2371
CBMN(∆t=2)	9	331.72	593182	3730.5	2646.8	120	248	298	1426
	10	4366.09	6018234	4070.0	2646.8		278	335	1614
	11	>67000°	80602289	4409.5	2646.8		308	372	1802
l&F	7	6.19	14962	3788.3	2658.5	42	165	318	1046
	8	105.64	211617	4297.9	2658.5	50	190	369	1233
S&F	7	5.29	12006	3301.0	2658.5	42	193	326	1221
	8	85.67	167306	3350.5	2658.5	50	222	377	1440

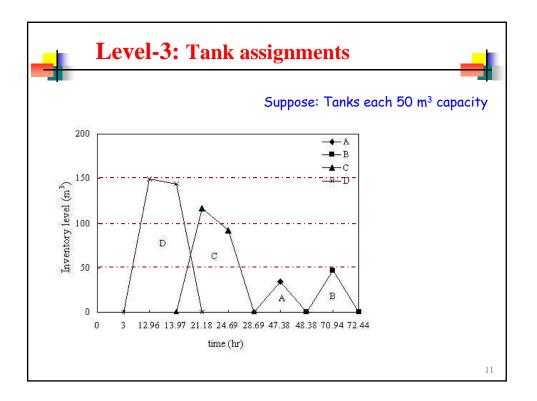

	Example 3				3	Maximization of Profit			
Model	Events	CPU time (s)	Nodes	RMILP (\$)	MILP (\$)	Binary variables	Continuous variables	Constraints	Nonzeros
Example 3a (F	l=8)								
S&K	7	184.46	145888	2513.8	1583.4	102	597	584	2061
CBMN(∆t=2)	7	6.90	10361	2606.5	1583.4	121	264	343	1495
I&F	5	0.38	1176	2100.0	1583.4	30	155	303	875
	6	25.92	57346	2847.8	1583.4	41	190	377	1139
S&F	5	0.40	1074	2100.0	1583.4	30	185	317	1015
	6	23.25	50566	2751	1583.4	41	226	391	1324
Example 3b (H									
S&K	9	372.92	94640	3867.3	3041.3	136	783	792	2789
CBMN(∆t=2)	9	107.97	47798	3864.3	3041.3	165	348	457	2031
I&F	7	18.33	15871	3465.6	3041.3	52	225	451	1403
S&F	7	0.73	579	3465.6	3041.3	52	267	465	1633
^a Suboptimal s	solution								

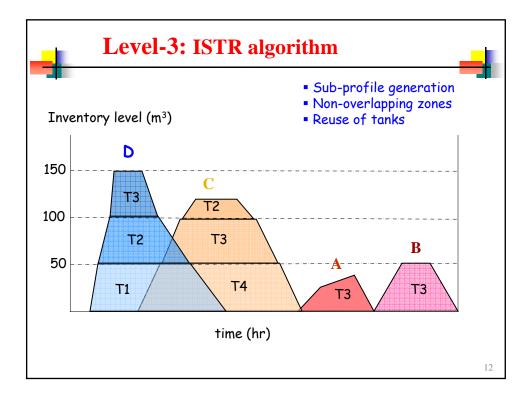


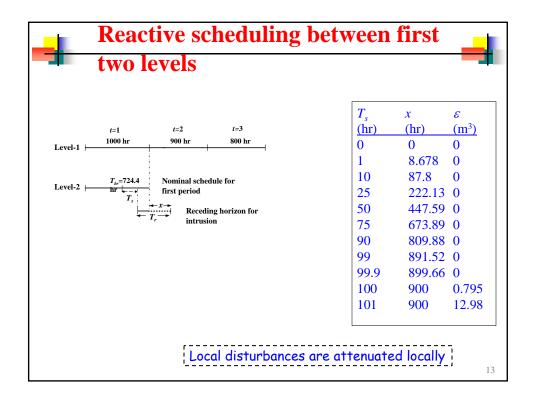


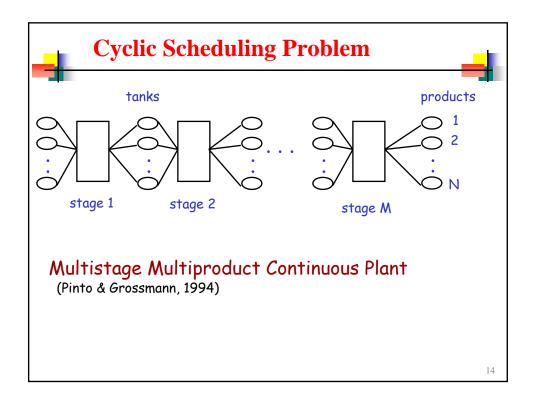


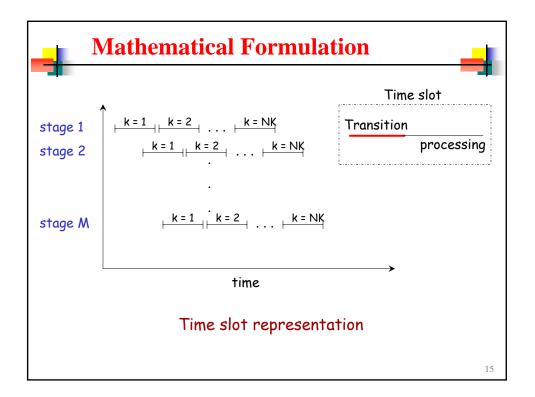


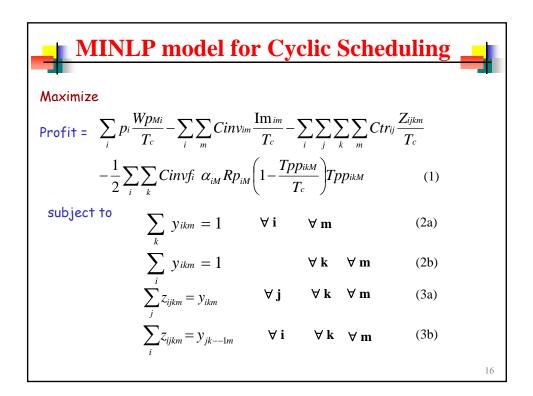


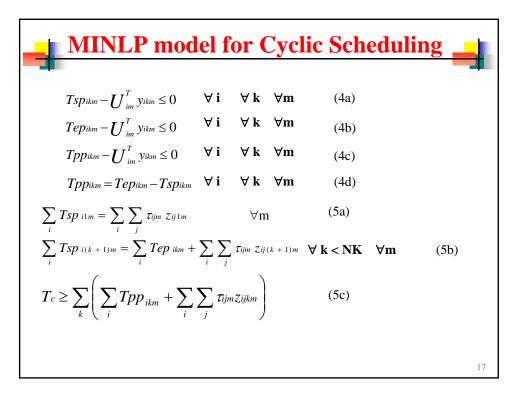


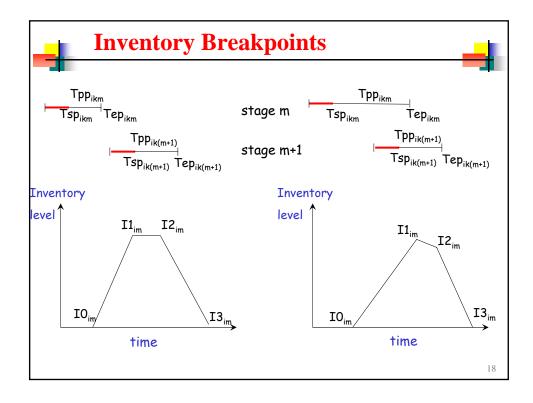





Performance indices	4P35	5P35	6P35	8P35	10P35
Discrete variables	48	66	98	154	252
Continuous variables	476	717	1112	1848	3436
No. of equations	606	855	1231	1621	2609
CPU time (sec)	13.2	19.4	68.3	372.3	648.1
Non linear N-Z	1135	1609	2388	3667	6251





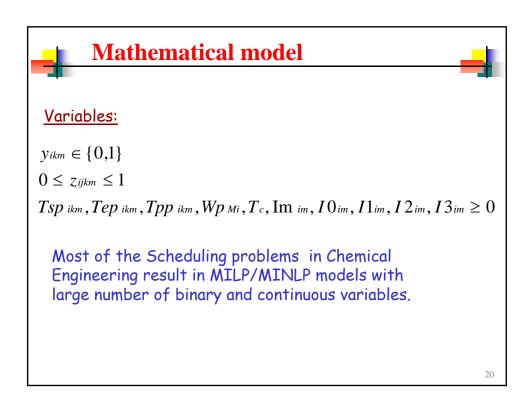


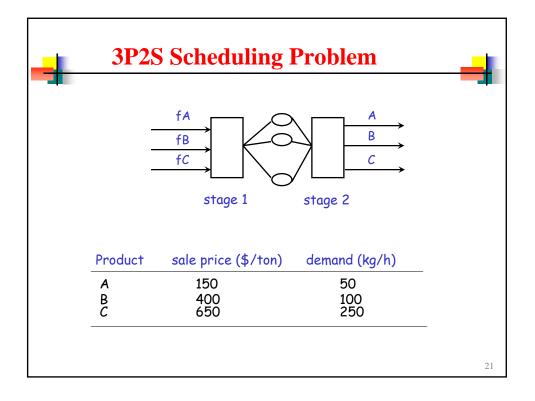
$$I_{1im} = IO_{im} + \alpha_{im}Rp_{im}\min\left\{\sum_{k}Tsp_{ik(m+1)} - \sum_{k}Tsp_{ikm}, \sum_{k}Tpp_{ikm}\right\}$$

$$I_{2im} = II_{im} + (\alpha_{im}Rp_{im} - Rp_{i(m+1)})\max\left\{0, \sum_{k}Tep_{ikm} - \sum_{k}Tsp_{ik(m+1)}\right\}$$

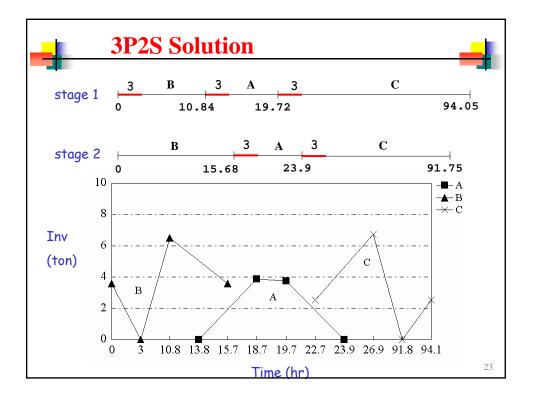
$$I_{3im} = I2_{im} - Rp_{i(m+1)}\min\left\{\sum_{k}Tpp_{ik(m+1)}, \sum_{k}Tep_{ik(m+1)} - \sum_{k}Tep_{ikm}\right\}$$

$$0 \le II_{im} \le Im_{im}$$


$$0 \le I2_{im} \le Im_{im}$$


$$Im_{im} \le \bigcup_{im}^{I}$$

$$I_{3im} = IO_{im} \qquad \forall i \ \forall m \qquad (6)$$


$$Wp_{Mi} = \alpha_{iM}Rp_{iM}\sum_{k}Tpp_{ikM} \qquad \forall i \qquad (7a)$$

$$Wp_{Mi} \ge D_{i}T_{c} \qquad \forall i \qquad (7b)$$

product (kg/h) (\$/ton) (kg/h) (\$/ton) A 800 140.6 900 4.00 B 1200 140.6 600 4.00			le 1	stage 2		
B 1200 140.6 600 4.00 C 1000 140.6 1100 4.00	roduct		storage		final inventory (\$/ton.h)	
Transition times (sequence dependent)	A B C	1200	140.6	600	4.06 4.06 4.06	
			•			
stage 1 stage 2		sto	ige 1	stage 2		
product A B C A B C	roduct	A B	С	A E	B C	

3 P	2S Solution		
Cycle tim	= \$ 442.53 / hr e = 94.05 hr = 146 (18 bin) ts = 162		
CPU time	= 12.43 sec		
Product	demand (kg/hr)	production (kg/h)	
A B C	50 100 250	50 100 758	
			24