Reynold’s number

Reynolds number named after Osborne Reynolds (1842 – 1912), gives relation between inertial and viscous forces of fluid flow. If inertial forces (flow rate) are much bigger and Reynolds number is higher than critical, Re > 2320, turbulent fluid flow will occur and if viscous forces are big enough in compare to inertial (flow rate), Reynolds number is lower than critical, Re < 2320, laminar fluid flow character will occur.

 

For calculation of Reynolds number in closed pipe fluid flow mean velocity, fluid viscosity and internal pipe diameter should be known. Reynolds number is proportional to fluid flow mean velocity and pipe diameter and inversely proportional to fluid viscosity.

Reynolds number is calculated using following equation:

The Reynolds Number is given by the formula:

 or reynolds

Where:
µ = the viscosity of the fluid,
V = the velocity of the object,
D/L = the diameter or length (basically the shape of the  object),
ρ=the density of the fluid.

With Reynolds number calculator you can analyze what makes fluid flow regime laminar and what is needed to force the fluid to flow in turbulent regime. For example – in pipes with very small internal diameter it is more likely to have laminar flow regime with small Reynolds number even for fluid with low viscosity. In fluid flow with temperature change flow regime can change from turbulent to laminar flow regime, as viscosity is changing depending on the fluid temperature.

Calculator can be used for all fluids and flow rates without any restriction. Calculator is applicable for fluid mixtures also, but viscosity of mixture must be entered.

Advertisements

One thought on “Reynold’s number

  1. Pingback: My Posts till now | Kishore Karuppaswamy

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s